Seitz Stainless

Avon, Minnesota

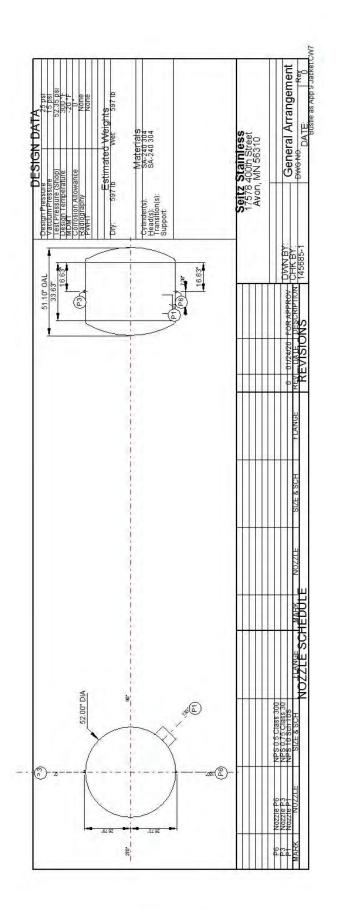
BPV VIII-Div 1, 2019 Pressure Vessel Design Calculations

Item: Bustle (Vapor Band) for Project 20-3776 Vessel No: 20-3776 Customer: Caloris Contract: Merit Functional Foods Designer:

This set of calculations is for the bustle (AKA Vapor Band) for the project S/N 20-3776 shell-and-tube heat exchanger. ASME BPV Code treats the vapor band as a conventional jacket, and follows Appendix 9 rules. Per Appendix 9, this band is Type 1, and uses a flat, knuckled head as the closeure, per figure 9-5 (b-3). The required closure thickness is given by:

where

```
trc = 0.707jwP/S = 0.103"
j = 4.8"
P = 25 psi
S = 27,000 psi
```


Therefore, the minimum head (closure) thickness is 0.103". We have chosen 1/4". Attachment to the main shell per Figure 9-5 (b-3) gives a minimum fillet weld of 1.25tc, equating to a face of 3/16".

Minimum knuckle radius is 3tc, or .75". We have chosen 1".

The shell thickness, welds, and nozzle calculations are contained herein. These calculations demonstrate that the shell thickness, welds, nozzles, and nozzle reinforcement is adequate.

Table of Contents

General Arrangement Drawing	1
Deficiencies Summary	3
Nozzle Schedule	4
Nozzle Summary	5
Pressure Summary	6
Revision History	7
Settings Summary	8
Radiography Summary	10
Thickness Summary	11
Weight Summary	12
Long Seam Summary	13
Hydrostatic Test	14
Vacuum Summary	15
Bill of Materials	16
F&D Head #1	17
Straight Flange on F&D Head #1	20
Cylinder #1	23
Nozzle P1 (P1)	26
Nozzle P3 (P3)	40
Nozzle P6 (P6)	48
Straight Flange on F&D Head #2	56
F&D Head #2	59

1/61

Deficiencies Summary

Deficiencies for F&D Head #1

UG-32(i): The inside knuckle radius (1") is less than 6 percent of the head skirt outside diameter (0.06*52" = 3.12"). (Corroded)

Deficiencies for <u>F&D Head #2</u> UG-32(i): The inside knuckle radius (1") is less than 6 percent of the head skirt outside diameter (0.06*52" = 3.12"). (Corroded)

Although flagged by Compress as a deficiency when used as a conventional full head, when used as a jacket close-out, these knucke radius rules do not apply. See the cover page for the applicable knuckle equation.

Nozzle Schedule

	Specifications											
Nozzle mark	Identifier	Size	Service		Materials	Impact Tested	Normalized	Fine Grain	Flange	Blind		
<u>P1</u>	Nozzle P1	NPS 10 Sch 10S	N	Nozzle	SA-312 TP304L Wld & smls pipe	No	No	No	N/A	No		
				Pad	SA-240 304L	No	No	No				
<u>P3</u>	Nozzle P3	NPS 0.75 Class 3000 - Threaded Half Coupling	PRV	Nozzle	SA-182 F304L <= 5	No	No	No	N/A	No		
<u>P6</u>	Nozzle P6	NPS 0.5 Class 3000 - Threaded Half Coupling	DRN	Nozzle	SA-182 F304L <= 5	No	No	No	N/A	No		

Nozzle Summary

	Dimensions																				
Nozzle mark	OD t _n		OD	D t _n	t _n	tn	tn	tn	tn	tn	tn	Req t _n	A1?	A ₂ ?		Shell		Reinfor Pa		Corr	A _a /A _r
	(in)	(in)	(in)	~1 '	A21	Nom t (in)	Design t (in)	User t (in)	Width (in)	t _{pad} (in)	(in)	(%)									
<u>P1</u>	10.75	0.165	0.1352	Yes	Yes	0.1875	0.1183		1.5	0.135	0	100.0									
<u>P3</u>	1.38	0.16	0.0625	Yes	Yes	0.1875	N/A		N/A	N/A	0	Exempt									
<u>P6</u>	1.12	0.14	0.0625	Yes	Yes	0.1875	N/A		N/A	N/A	0	Exempt									

	Definitions						
t _n	Nozzle thickness						
Req t _n	Nozzle thickness required per UG-45/UG-16 Increased for pipe to account for 12.5% pipe thickness tolerance						
Nom t	Vessel wall thickness						
Design t	Required vessel wall thickness due to pressure + corrosion allowance per UG-37						
User t	Local vessel wall thickness (near opening)						
A _a	Area available per UG-37, governing condition						
A _r	Area required per UG-37, governing condition						
Corr	Corrosion allowance on nozzle wall						

Pressure Summary

	Component Summary											
ldentifier	P Design (psi)	T Design (°F)	MAWP (psi)	MAP (psi)	MAEP (psi)	T _e external (°F)	MDMT (°F)	MD Exem		Impact Tested		
F&D Head #1	25	300	40.91	43.3	22.46	300	-320	Not	Note 1			
Straight Flange on F&D Head #1	25	300	102.08	108.02	27.19	300	-320	Note 2		No		
Cylinder #1	25	300	95.73	101.3	23.85	300	-320	Note 3		No		
Straight Flange on F&D Head #2	25	300	102.08	108.02	27.19	300	-320	Note 2		No		
F&D Head #2	25	300	40.27	42.62	22.11	300	-320	Not	ie 4	No		
Nozzle P1 (P1)	25	300	86.43	90.26	15.71	300	-320	Nozzle	Note 5	No		
	23	500	00.45	90.20	15.71	500	-520	Pad	Note 6	No		
Nozzle P3 (P3)	25	300	136.76	144.72	23.85	300	-320	Note 7		No		
Nozzle P6 (P6)	25	300	136.76	144.72	23.85	300	-320	Not	e 8	No		

Chamber Summary					
Design MDMT	-20 °F				
Rated MDMT	-320 °F @ 40.27 psi				
MAWP hot & corroded	40.27 psi @ 300 °F				
MAP cold & new	42.62 psi @ 70 °F				
MAEP	15.71 psi @ 300 °F				

	Notes for MDMT Rating							
Note #	Exemption	Details						
1.	Impact test exempt per UHA-51(g) (coincident ratio = 0.2935)							
2.	Impact test exempt per UHA-51(g) (coincident ratio = 0.2974)							
3.	Impact test exempt per UHA-51(g) (coincident ratio = 0.3172)							
4.	Impact test exempt per UHA-51(g) (coincident ratio = 0.297)							
5.	Impact test exempt per UHA-51(g) (coincident ratio = 0.0872)							
6.	Impact test exempt per UHA-51(g) (coincident ratio = 0.2774)							
7.	Impact test exempt per UHA-51(g) (coincident ratio = 0.008)							
8.	Impact test exempt per UHA-51(g) (coincident ratio = 0.0073)							

Revision History

	Revisions						
No.	Date	Operator	Notes				
0	7/22/2020	jeffh	New vessel created ASME Section VIII Division 1 [COMPRESS 2020 Build 8000]				

Settings Summary

COMPRESS 2020 Build 8000	
ASME Section VIII Division 1, 2019	
Units	U.S. Customary
Datum Line Location	0.00" from right seam
Vessel Design Mode	Design Mode
Minimum thickness	0.0625" per UG-16(b)
Design for cold shut down only	No
Design for lethal service (full radiography required)	No
Design nozzles for	Design P only
Corrosion weight loss	100% of theoretical loss
UG-23 Stress Increase	1.20
Skirt/legs stress increase	1.0
Minimum nozzle projection	6"
Juncture calculations for α > 30 only	Yes
Preheat P-No 1 Materials > 1.25" and <= 1.50" thick	No
UG-37(a) shell tr calculation considers longitudinal stress	No
Cylindrical shells made from pipe are entered as minimum thickness	No
Nozzles made from pipe are entered as minimum thickness	No
ASME B16.9 fittings are entered as minimum thickness	No
Butt welds	Tapered per Figure UCS-66.3(a)
Disallow Appendix 1-5, 1-8 calculations under 15 psi	No
Hydro/Pneumatic Test	
Shop Hydrotest Pressure	1.3 times vessel MAWP [UG-99(b)
Test liquid specific gravity	1.00
Maximum stress during test	90% of yield
Required Marking - UG-116	
UG-116(e) Radiography	None
UG-116(f) Postweld heat treatment	None
Code Cases\Interpretations	
Use Code Case 2547	No
Use Appendix 46	No
Use UG-44(b)	No
Use Code Case 2955	No
Apply interpretation VIII-1-83-66	Yes
Apply interpretation VIII-1-86-175	Yes
Apply interpretation VIII-1-01-37	Yes
Apply interpretation VIII-1-01-57 Apply interpretation VIII-1-01-150	Yes
Apply interpretation VIII-1-07-50	Yes
Apply interpretation VIII-1-16-85	Yes
No UCS-66.1 MDMT reduction	No
No UCS-68(c) MDMT reduction	No

Disallow UG-20(f) exemptions	No						
UG-22 Loadings							
UG-22(a) Internal or External Design Pressure	Yes						
UG-22(b) Weight of the vessel and normal contents under operating or test conditions	No						
UG-22(c) Superimposed static reactions from weight of attached equipment (external loads)	No						
UG-22(d)(2) Vessel supports such as lugs, rings, skirts, saddles and legs	No						
UG-22(f) Wind reactions	No						
UG-22(f) Seismic reactions	No						
UG-22(j) Test pressure and coincident static head acting during the test:	No						
Note: UG-22(b),(c) and (f) loads only considered when supports are present.							

Note 2: UG-22(d)(1),(e),(f)-snow,(g),(h),(i) are not considered. If these loads are present, additional calculations must be performed.

License Information					
Company Name	Seitz Stainless				
License	Commercial				
License Key ID	23841				
Support Expires	May 24, 2021				

Radiography Summary

	UG-116 Radiography										
	Lo	ongitudinal Seam	Left C	Circumferential Seam	Right						
Component	Category (Fig UW-3)	Radiography / Joint Type	Category (Fig UW-3)	Radiography / Joint Type	Category (Fig UW-3)	Radiography / Joint Type	Mark				
F&D Head #1	A	None UW-11(c) / Type 1	N/A	N/A	В	None UW-11(c) / Type 1	None				
Cylinder #1	A	None UW-11(c) / Type 1	В	None UW-11(c) / Type 1	В	None UW-11(c) / Type 1	None				
F&D Head #2	A	None UW-11(c) / Type 1	В	None UW-11(c) / Type 1	N/A	N/A	None				
Nozzle	Lo	ongitudinal Seam	Nozzle to V	essel Circumferential Seam	Nozzle free						
Nozzle P1 (P1)	N/A	Welded pipe	D	N/A / Type 7	N/A	N/A	N/A				
Nozzle P3 (P3)	N/A	Seamless No RT	D	N/A / Type 7	N/A	N/A	N/A				
Nozzle P6 (P6)	N/A	Seamless No RT	D	N/A / Type 7	N/A	N/A	N/A				
Interpretation VI	Interpretation VIII-1 01-150 has been applied.										
			UG-116(e) R	equired Marking: None							

Thickness Summary

	Component Data										
Component Identifier	Material	Diameter (in)	Length (in)	Nominal t (in)	Design t (in)	Total Corrosion (in)	Joint E	Load			
F&D Head #1	SA-240 304	51.6 ID	7.7839	0.2*	0.1545	0	0.70	External			
Straight Flange on F&D Head #1	SA-240 304	51.6 ID	1	0.2	0.1548	0	0.70	External			
Cylinder #1	SA-240 304	51.6 ID	33.625	0.1875	0.1547	0	0.70	External			
Straight Flange on F&D Head #2	SA-240 304	51.6 ID	1	0.2	0.1548	0	0.70	External			
F&D Head #2	SA-240 304	51.6 ID	7.6942	0.2*	0.1563	0	0.70	External			
*Head minimum thickness after fo	*Head minimum thickness after forming										

	Definitions							
Nominal t	Vessel wall nominal thickness							
Design t	Required vessel thickness due to governing loading + corrosion							
Joint E	Longitudinal seam joint efficiency							
	Load							
Internal	Circumferential stress due to internal pressure governs							
External	External pressure governs							
Wind	Combined longitudinal stress of pressure + weight + wind governs							
Seismic	Combined longitudinal stress of pressure + weight + seismic governs							

Weight Summary

	Weight (Ib) Contributed by Vessel Elements										
Component	Metal Metal	Insulation	Insulation	Lining	Piping	Piping Operating Liquid		Test Liquid		Surface Area	
component	New*	Corroded	Insulation	Supports		New	Corroded	New	Corroded	ft ²	
F&D Head #1	145.6	145.6	0	0	0	0	0	0	389.7	389.7	18
Cylinder #1	292.4	292.4	0	0	0	0	0	0	2,556.7	2,556.7	37
F&D Head #2	145.4	145.4	0	0	0	0	0	0	386.2	386.2	18
TOTAL:	583.3	583.3	0	0	0	0	0	0	3,332.6	3,332.6	74
*Shells with at	Shells with attached nozzles have weight reduced by material cut out for opening.										

	Weight (Ib) Contributed by Attachments										
Component	Body Flanges			ozzles & langes	Packed Beds	Trays	Tray Supports	Rings & Clips	Vertical Loads	Surface Area ft ²	
	New	Corroded	New	Corroded	Deus		Cupports	Ciipa	Loads	11-	
F&D Head #1	0	0	0	0	0	0	0	0	0	0	
Cylinder #1	0	0	13.3	13.3	0	0	0	0	0	1	
F&D Head #2	0	0	0	0	0	0	0	0	0	0	
TOTAL:	0	0	13.3	13.3	0	0	0	0	0	1	

Vessel Totals								
	New	Corroded						
Operating Weight (lb)	597	597						
Empty Weight (lb)	597	597						
Test Weight (lb)	3,929	3,929						
Surface Area (ft ²)	75	-						
Capacity** (US gal)	397	397						
**The vessel capacity does not include volume of nozzle, piping or other attachments.								

Vessel Lift Condition	
Vessel Lift Weight, New (lb)	597
Center of Gravity from Datum (in)	16.9309

Shell Long Seam Angles						
Component	Seam 1					
Cylinder #1	10°					

Shell Plate Lengths							
Component	Starting Angle	Plate 1					
Cylinder #1	10°	162.6952"					

 Note

 1) Plate Lengths use the circumference of the vessel based on the mid diameter of the components.

Hydrostatic Test

Horizontal shop hydrostatic test based on MAWP per UG-99(b)

Gauge pressure at 70°F $= 1.3 \cdot MAWP \cdot LSR$ $= 1.3 \cdot 40.27 \cdot 1$ = 52.35 psi

H	Horizontal shop hydrostatic test									
Identifier	Local test pressure (psi)	Test liquid static head (psi)	UG-99(b) stress ratio	UG-99(b) pressure factor						
F&D Head #1	54.253	1.898	1.0582	1.30						
Straight Flange on F&D Head #1	54.253	1.898	1.0582	1.30						
Cylinder #1	54.253	1.898	1.0582	1.30						
Straight Flange on F&D Head #2	54.253	1.898	1.0582	1.30						
F&D Head #2	54.253	1.898	1.0582	1.30						
Nozzle P1 (P1) (1)	54.271	1.917	1	1.30						
Nozzle P3 (P3)	52.383	0.029	1	1.30						
Nozzle P6 (P6)	54.286	1.932	1	1.30						
(1) Nozzle P1 (P1) limits the UG-99(b) strea (2) The zero degree angular position is ass	 (1) Nozzle P1 (P1) limits the UG-99(b) stress ratio. (2) The zero degree angular position is assumed to be up, and the test liquid height is assumed to the top-most flange. 									

The field test condition has not been investigated.

Vacuum Summary

Largest Unsupported Length Le								
Component	Line of Support	Elevation above Datum (in)	Length Le (in)					
F&D Head #1	-	42.4089	N/A					
-	1/3 depth of F&D Head #1	37.153	N/A					
Straight Flange on F&D Head #1 Left	-	34.625	40.651					
Straight Flange on F&D Head #1 Right	-	33.625	40.651					
Cylinder #1 Left	-	33.625	40.651					
Cylinder #1 Right	-	0	40.651					
Straight Flange on F&D Head #2 Left	-	0	40.651					
Straight Flange on F&D Head #2 Right	-	-1	40.651					
-	1/3 depth of F&D Head #2	-3.4981	N/A					
F&D Head #2	-	-8.6942	N/A					

Bill of Materials

	Heads									
Item #	Туре	Material	Thk [in]	Dia. [in]	Wt. [lb] (ea.)	Qty				
H1	F&D Head	SA-240 304	0.2 (min.)	51.6 ID	145.6	1				
H2	F&D Head	SA-240 304	0.2 (min.)	51.6 ID	145.4	1				

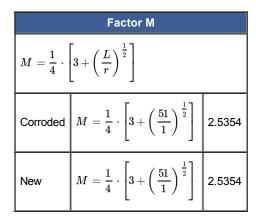
Shells									
ltem #	Туре	Material	Thk [in]	Dia. [in]	Length [in]	Wt. [lb] (ea.)	Qty		
S1	Cylinder	SA-240 304	0.1875	51.6 ID	33.6	297.5	1		

Nozzles							
Item #	Туре	Material	NPS	Thk [in]	Dia. [in]	Length [in]	Wt. [lb]
Noz1	Nozzle	SA-312 TP304L Wld & smls pipe	NPS 10 Sch 10S	0.165	10.75 OD	6.8	13

	Nozzles - Couplings					
Item #	Туре	Material	Dia. [in]	Length [in]	Qty	
C1	NPS 0.75 Class 3000 - Threaded Half Coupling	SA-182 F304L <= 5	1.38 OD	1	1	
C2	NPS 0.5 Class 3000 - Threaded Half Coupling	SA-182 F304L <= 5	1.12 OD	0.94	1	

Plates					
Item #	Material	Thk [in]	Wt. [lb]	Qty [ft ²]	
Plate1	SA-240 304L	0.135	43.1	1.03	
Plate1 - Note: Applies to nozzle pad					

F&D Head #1


ASME Section VIII Division 1, 2019 Edition						
Com	ponent	F&D Head				
Ma	terial	S/	A-240 304 (II-D p. 88	, In. 37)		
Attac	hed To	Cylinder #1				
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP		
No	No	No	No	No		
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)		
Inte	ernal	25	300	-20		
Ext	ernal	15	300	-20		
		Static Liq	uid Head			
Con	dition	P _s (psi)	H _s (in)	SG		
Test h	orizontal	1.9	52.5908	1		
Dimensions						
Inner Diameter		51.6"				
Crown	Radius L	51"				
Knuckle	e Radius r	1"				
Minimum	Thickness	0.2"				
Corrosion	Inner	0"				
Corrosion	Outer		0"			
Lenç	gth L _{sf}	1"				
Nominal T	hickness t _{s f}	0.2"				
		Weight and	Capacity			
Weight (Ib) ¹			ght (lb) ¹	Capacity (US gal) ¹		
N	ew	14	45.58	46.73		
Cor	roded	145.58 46.73				
		Radiog	raphy			
Categor	Category A joints None UW-11(c) Type 1			be 1		
Head to a	shell seam		None UW-11(c) Typ	be 1		

¹ includes straight flange

Results Summary		
Governing condition	external pressure	
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"	
Design thickness due to internal pressure (t)	<u>0.1222</u> "	
Design thickness due to external pressure (t_e)	<u>0.1545</u> "	
Maximum allowable working pressure (MAWP)	<u>40.91</u> psi	
Maximum allowable pressure (MAP)	<u>43.3</u> psi	
Maximum allowable external pressure (MAEP)	<u>22.46</u> psi	
Rated MDMT	-320°F	

Note: Endnote 90 used to determine allowable stress.

UHA-51 Material Toughness Requirements			
$t_r = rac{40.27 \cdot 51 \cdot 1}{2 \cdot 20,000 \cdot 0.7 - 0.2 \cdot 40.27} =$	0.0734"		
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0734 \cdot 0.8}{0.2 - 0} =$	0.2935		
Impact test exempt per UHA-51(g) (coincident ratio = 0.2935)			
Rated MDMT =	-320°F		
Material is exempt from impact testing at the Design MDMT of -20°F.			

Design thickness for internal pressure, (Corroded at 300 °F) Appendix 1-4(d)

$$t = \frac{P \cdot L \cdot M}{2 \cdot S \cdot E - 0.2 \cdot P} + \text{Corrosion} = \frac{25 \cdot 51 \cdot 2.5354}{2 \cdot 18,900 \cdot 0.7 - 0.2 \cdot 25} + 0 = \underline{0.1222}$$

Maximum allowable working pressure, (Corroded at 300 °F) Appendix 1-4(d)

$$P = \frac{2 \cdot S \cdot E \cdot t}{L \cdot M + 0.2 \cdot t} - P_s = \frac{2 \cdot 18,900 \cdot 0.7 \cdot 0.2}{51 \cdot 2.5354 + 0.2 \cdot 0.2} - 0 = \underline{40.91} \text{ psi}$$

Maximum allowable pressure, (New at 70 °F) Appendix 1-4(d)

$$P = \frac{2 \cdot S \cdot E \cdot t}{L \cdot M + 0.2 \cdot t} - P_s = \frac{2 \cdot 20,000 \cdot 0.7 \cdot 0.2}{51 \cdot 2.5354 + 0.2 \cdot 0.2} - 0 = \underline{43.3} \text{ psi}$$

Design thickness for external pressure, (Corroded at 300 °F) UG-33(e)

Equivalent outside spherical radius (R₀) = Outside crown radius = 51.2 in

$$A = \frac{0.125}{R_o \ / \ t} = \frac{0.125}{51.2 \ / \ 0.154426} = 0.000377$$

From Table HA-1:B = 4,973.251 psi

$$P_a = \frac{B}{R_o \ / \ t} = \frac{4,973.251}{51.2 \ / \ 0.1544} = 15 \ {
m psi}$$

t = 0.1544" + Corrosion = 0.1544" + 0" = 0.1544"

Check the external pressure per UG-33(a)(1) Appendix 1-4(d)

$$t = \frac{1.67 \cdot P_e \cdot L \cdot M}{2 \cdot S \cdot E - 0.2 \cdot 1.67 \cdot P_e} + \text{Corrosion} = \frac{1.67 \cdot 15 \cdot 51 \cdot 2.5354}{2 \cdot 18,900 \cdot 1 - 0.2 \cdot 1.67 \cdot 15} + 0 = 0.0857^{\circ} + 0 =$$

Maximum Allowable External Pressure, (Corroded at 300 °F) UG-33(e)

Equivalent outside spherical radius (R₀) = Outside crown radius = 51.2 in

$$A = \frac{0.125}{R_o \ / \ t} = \frac{0.125}{51.2 \ / \ 0.2} = 0.000488$$

From Table HA-1:B = 5,749.7679 psi

$$P_a = \frac{B}{R_o \ / \ t} = \frac{5,749.7679}{51.2 \ / \ 0.2} = 22.46$$
 psi

Check the Maximum External Pressure, UG-33(a)(1) Appendix 1-4(d)

$$P = \frac{2 \cdot S \cdot E \cdot t}{(L \cdot M + 0.2 \cdot t) \cdot 1.67} = \frac{2 \cdot 18,900 \cdot 1 \cdot 0.2}{(51 \cdot 2.5354 + 0.2 \cdot 0.2) \cdot 1.67} = 35 \text{ psi}$$

The maximum allowable external pressure (MAEP) is 22.46 psi.

% Forming strain - UHA-44(a)(2)

$$EFE = \left(\frac{75 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{75 \cdot 0.2}{1.1}\right) \cdot \left(1 - \frac{1.1}{\infty}\right) = 13.6364\%$$

Straight Flange on F&D Head #1

ASME Section VIII Division 1, 2019 Edition					
Com	ponent	Cylinder			
Material		SA-240 304 (II-D p. 88, In. 37)			
Impact Tested	Normalized	Fine Grain Practice	РѠҤТ	Maximize MDMT/ No MAWP	
No	No	No	No	No	
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)	
Int	ernal	25	300	-20	
Ext	ternal	15	300	-20	
		Static Liquid	Head		
Condition P _s (psi)		H _s (in)	SG		
Test horizontal		1.9	52.5908	1	
	Dimensions				
Inner I	Diameter		51.6"		
Le	ngth	1"			
Nominal	Thickness	0.2"			
Corrosion	Inner	0"			
	Outer		0"		
		Weight and C	apacity		
		Wei	ght (lb)	Capacity (US gal)	
N	lew	9.44		9.05	
Cor	roded	9.44		9.05	
	Radiography				
Longitu	Longitudinal seam None UW-11(c) Type 1			e 1	
Right Circum	Right Circumferential seam None UW-11(c) Type 1				

Results Summary			
Governing condition	External pressure		
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"		
Design thickness due to internal pressure (t)	<u>0.0489"</u>		
Design thickness due to external pressure (t_e)	<u>0.1548"</u>		
Maximum allowable working pressure (MAWP)	<u>102.08 psi</u>		
Maximum allowable pressure (MAP)	<u>108.02 psi</u>		
Maximum allowable external pressure (MAEP)	<u>27.19 psi</u>		
Rated MDMT	-320 °F		

UHA-51 Material Toughness Requirements			
$t_r = \frac{40.27 \cdot 25.8}{20,000 \cdot 0.7 - 0.6 \cdot 40.27} =$	0.0743"		
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0743 \cdot 0.8}{0.2 - 0} =$	0.2974		
Impact test exempt per UHA-51(g) (coincident ratio = 0.2974)			
Rated MDMT =	-320°F		
Material is exempt from impact testing at the Design MDMT of -20°F.			

Design thickness, (at 300 °F) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{25 \cdot 25.8}{18,900 \cdot 0.70 - 0.60 \cdot 25} + 0 = \underline{0.0489}"$$

Maximum allowable working pressure, (at 300 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{18,900 \cdot 0.70 \cdot 0.2}{25.8 + 0.60 \cdot 0.2} - 0 = \underline{102.08} \text{ ps}$$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{20,000 \cdot 0.70 \cdot 0.2}{25.8 + 0.60 \cdot 0.2} = \underline{108.02} \text{ psi}$

External Pressure, (Corroded & at 300 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{40.651}{52} = 0.7818$$
$$\frac{D_o}{t} = \frac{52}{0.1548} = 335.9886$$

From table G: A = 0.000287From table HA-1: B = 3,779.872 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 3,779.87}{3 \cdot (52/0.1548)} = 15 \text{ psi}$$

Design thickness for external pressure P_a = 15 psi

 $t_a = t + \text{Corrosion} = 0.1548 + 0 = 0.1548$ "

Maximum Allowable External Pressure, (Corroded & at 300 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{40.651}{52} = 0.7818$$
$$\frac{D_o}{t} = \frac{52}{0.2} = 260.0000$$

From table G: A = 0.000412From table HA-1: B = 5,302.6411 psi

 $P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 5,302.64}{3 \cdot (52/0.2)} = rac{27.19}{27.19} \, \mathrm{psi}$

% Forming strain - UHA-44(a)(2)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 0.2}{25.9}\right) \cdot \left(1 - \frac{25.9}{\infty}\right) = 0.3861\%$$

Cylinder #1

ASME Section VIII Division 1, 2019 Edition					
Com	ponent	Cylinder			
Ма	terial	SA-240 304 (II-D p. 88, In. 37)			
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP	
No	No	No	No	No	
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)	
Int	ernal	25	300	-20	
Ext	ternal	15	300	20	
		Static Liquid	Head		
Cor	dition	P _s (psi)	H _s (in)	SG	
Test horizontal		1.9	52.5908	1	
	Dimensions				
Inner I	Diameter		51.6"		
Le	ngth		33.625"		
Nominal	Thickness		0.1875"		
Corrosion	Inner		0"		
Corrosion	Outer		0"		
		Weight and C	apacity		
		Wei	ght (lb)	Capacity (US gal)	
N	lew	292.4		304.4	
Corroded		2	292.4	304.4	
		Radiograp	ohy		
Longitu	dinal seam	inal seam None UW-11(c) Type 1			
Left Circum	ferential seam	None UW-11(c) Type 1			
Right Circun	nferential seam		None UW-11(c) Typ	le 1	

Results Summary		
Governing condition	External pressure	
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"	
Design thickness due to internal pressure (t)	<u>0.0489"</u>	
Design thickness due to external pressure (t_e)	<u>0.1547"</u>	
Maximum allowable working pressure (MAWP)	<u>95.73 psi</u>	
Maximum allowable pressure (MAP)	<u>101.3 psi</u>	
Maximum allowable external pressure (MAEP)	<u>23.85 psi</u>	
Rated MDMT	-320 °F	

UHA-51 Material Toughness Requirements			
$t_r = \frac{40.27 \cdot 25.8}{20,000 \cdot 0.7 - 0.6 \cdot 40.27} =$	0.0743"		
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0743 \cdot 0.8}{0.1875 - 0} =$	0.3172		
Impact test exempt per UHA-51(g) (coincident ratio = 0.3172)			
Rated MDMT =	-320°F		
Material is exempt from impact testing at the Design MDMT of -20°F.			

Design thickness, (at 300 °F) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{25 \cdot 25.8}{18,900 \cdot 0.70 - 0.60 \cdot 25} + 0 = \underline{0.0489}"$$

Maximum allowable working pressure, (at 300 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{18,900 \cdot 0.70 \cdot 0.1875}{25.8 + 0.60 \cdot 0.1875} - 0 = \underline{95.73} \text{ psi}$$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{20,000 \cdot 0.70 \cdot 0.1875}{25.8 + 0.60 \cdot 0.1875} = \underline{101.3} \text{ psi}$

External Pressure, (Corroded & at 300 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{40.651}{51.975} = 0.7821$$
$$\frac{D_o}{t} = \frac{51.975}{0.1547} = 335.9171$$

From table G: A = 0.000287From table HA-1: B = 3,779.0742 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 3,779.07}{3 \cdot (51.975/0.1547)} = 15$$
 psi

Design thickness for external pressure P_a = 15 psi

 $t_a = t + \text{Corrosion} = 0.1547 + 0 = 0.1547$ "

Maximum Allowable External Pressure, (Corroded & at 300 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{40.651}{51.975} = 0.7821$$
$$\frac{D_o}{t} = \frac{51.975}{0.1875} = 277.2000$$

From table G: A = 0.000376From table HA-1: B = 4,957.965 psi

 $P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 4,957.97}{3 \cdot (51.975/0.1875)} = \underline{23.85} \text{ psi}$

% Forming strain - UHA-44(a)(2)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 0.1875}{25.8938}\right) \cdot \left(1 - \frac{25.8938}{\infty}\right) = 0.3621\%$$

Nozzle P1 (P1)

ASME Section VI	Il Division 1, 2019 Edition					
0,1339	0,1875					
Note: round inside edges per UG-76(c)						
	and Orientation					
Located on	Cylinder #1					
Orientation	135°					
Nozzle center line offset to datum line	24" 31.9875"					
End of nozzle to shell center	No					
Passes through a Category A joint	Nozzle					
Service	Inlet (IN)					
Description	NPS 10 Sch 10S					
Access opening	No					
Material specification	SA-312 TP304L Wid & smls pipe (II-D p. 84, In. 38)					
Inside diameter, new	10.42"					
Pipe nominal wall thickness	0.165"					
Pipe minimum wall thickness ¹	0.1444"					
Corrosion allowance	0"					
Projection available outside vessel, Lpr	6"					
Local vessel minimum thickness	0.1875"					
Liquid static head included	0 psi					
Longitudinal joint efficiency	1					
Rein	Iforcing Pad					
Material specification	SA-240 304L (II-D p. 84, In. 33)					
Diameter, D _p	13.75"					
Thickness, t _e	0.135"					
Is split	No					
	Welds					
Inner fillet, Leg ₄₁	0.1875"					
Outer fillet, Leg ₄₂	0.1339"					

Nozzle to vessel groove weld	0.1875"
Pad groove weld	0.135"

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

UHA-51 Material Toughness Requirements Nozzle							
$t_r = rac{40.27 \cdot 5.21}{16{,}700 \cdot 1 - 0.6 \cdot 40.27} =$	0.0126"						
$egin{aligned} { m Stress \ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0126 \cdot 1}{0.1444 - 0} = \ \end{aligned}$	0.0872						
Impact test exempt per UHA-51(g) (coincident ratio = 0.0872)							
Rated MDMT =	-320°F						
Material is exempt from impact testing at the Design MDMT of -20°F.							

UHA-51 Material Toughness Requirements Pad						
$t_r = rac{40.27 \cdot 25.8}{20,000 \cdot 1 - 0.6 \cdot 40.27} =$	0.052"					
$egin{array}{l} { m Stress \ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.052 \cdot 1}{0.1875 - 0} = \end{array}$	0.2774					
Impact test exempt per UHA-51(g) (coincident ratio = 0.2774)						
Rated MDMT =	-320°F					
Material is exempt from impact testing at the Design MDMT of -20°F.						

Reinforcement Calculations for MAWP

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)						UG-45 Sui	mmary (in)	
For P = 86.43 psi @ 300 °F The opening is adequately reinforced					The nozzle p	asses UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
<u>1.2373</u>	<u>1.2374</u>	<u>0.7183</u>	<u>0.1143</u>		<u>0.3579</u>	<u>0.0469</u>	<u>0.1183</u>	0.1444

UG-41 Weld Failure Path Analysis Summary (Ib _f)								
All failure paths are stronger than the applicable weld loads								
Weld load W								
10,191.06	<u>9,810.2</u>	<u>55,736.26</u>	<u>3,781.38</u>	<u>98,361.6</u>	<u>10,843.51</u>	<u>67,947.08</u>		

UW-16 Weld Sizing Summary								
Weld description	Status							
Nozzle to pad fillet (Leg ₄₁)	<u>0.0945</u>	0.1312	weld size is adequate					
Pad to shell fillet (Leg ₄₂)	<u>0.0675</u>	0.0937	weld size is adequate					

Calculations for internal pressure 86.43 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

 $L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[10.42, 5.21 + (0.165 0) + (0.1875 0) \right]$
- = 10.42 in

Outer Normal Limit of reinforcement per UG-40

 $L_{H} = \min \left[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e \right]$

- $= \min \left[2.5 \cdot (0.1875 0), 2.5 \cdot (0.165 0) + 0.135 \right]$
- = 0.4688 in

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$
$$= \frac{86.4343 \cdot 5.21}{16,700 \cdot 1 - 0.6 \cdot 86.4343}$$
$$= 0.027 \text{ in}$$

Required thickness t_r from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{86.4343 \cdot 25.8}{18,900 \cdot 1 - 0.6 \cdot 86.4343}$$

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{86.4343 \cdot 25.8}{18,900 \cdot 0.7 - 0.6 \cdot 86.4343}$$
$$= 0.1692 \text{ in}$$

Area required per UG-37(c)

Allowable stresses: S_n = 16,700, S_v = 18,900, S_p = 16,700 psi

$$f_{r1} = \text{lesser of 1 or } \frac{S_n}{S_v} = 0.8836$$
$$f_{r2} = \text{lesser of 1 or } \frac{S_n}{S_v} = 0.8836$$
$$f_{r3} = \text{lesser of } f_{r2} \text{ or } \frac{S_p}{S_v} = 0.8836$$

$$f_{r4}$$
 = lesser of 1 or $\frac{S_p}{S_v}$ = 0.8836

$$A = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$$

= 10.42 \cdot 0.1183 \cdot 1 + 2 \cdot 0.165 \cdot 0.1183 \cdot 1 \cdot (1 - 0.8836)
= 1.2373 in²

Area available from FIG. UG-37.1

 A_1 = larger of the following = 0.7183 in²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= 10.42 \cdot (1 \cdot 0.1875 1 \cdot 0.1183) 2 \cdot 0.165 \cdot (1 \cdot 0.1875 1 \cdot 0.1183) \cdot (1 0.8836)$
- = 0.7183 in²
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= 2 \cdot (0.1875 + 0.165) \cdot (1 \cdot 0.1875 1 \cdot 0.1183) 2 \cdot 0.165 \cdot (1 \cdot 0.1875 1 \cdot 0.1183) \cdot (1 0.8836)$
- = 0.0461 in²

 A_2 = smaller of the following= <u>0.1143</u> in²

$$= 5 \cdot (t_n - t_{rn}) \cdot f_{r2} \cdot t$$

- $= 5 \cdot (0.165 0.027) \cdot 0.8836 \cdot 0.1875$
- = 0.1143 in²
- $= 2 \cdot (t_n t_{rn}) \cdot (2.5 \cdot t_n + t_e) \cdot f_{r2}$
- = $2 \cdot (0.165 0.027) \cdot (2.5 \cdot 0.165 + 0.135) \cdot 0.8836$
- = 0.1335 in²

 $A_{41} = Leg^2 \cdot f_{r3}$

- = 0.1875 $^{2} \cdot 0.8836$
- = <u>0.0311</u> in²

 $A_{42} = Leg^2 \cdot f_{r4}$

- = 0.1339² · 0.8836
- = <u>0.0158</u> in²

 $\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$

- $= (13.75 10.42 2 \cdot 0.165) \cdot 0.135 \cdot 0.8836$
- = <u>0.3579</u> in²

 $Area = A_1 + A_2 + A_{41} + A_{42} + A_5$ = 0.7183 + 0.1143 + 0.0311 + 0.0158 + 0.3579 = <u>1.2374</u> in²

As Area >= A the reinforcement is adequate.

UW-16(c)(2) Weld Check

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$rac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + ext{Corrosion}$
	=	$\frac{86.4343 \cdot 5.21}{16,700 \cdot 1 - 0.6 \cdot 86.4343} + 0$
	=	0.027 in
t_a	=	$\max\left[t_{a\mathrm{UG-27}},t_{a\mathrm{UG-22}}\right]$
	=	$\max[0.027, 0]$
	=	0.027 in
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{86.4343\cdot 25.8}{18,900\cdot 1-0.6\cdot 86.4343}+0$
	=	0.1183 in
t_{b1}	=	$\max\left[t_{b1},t_{b\mathrm{UG16}}\right]$
	=	$\max\ [0.1183, 0.0625]$

= 0.1183 in

 t_b $\min[t_{b3}, t_{b1}]$ =

min [0.3194, 0.1183]

0.1183 in

 $t_{
m UG-45}$ $\max[t_a, t_b]$

> max [0.027, 0.1183] =

<u>0.1183</u> in =

Available nozzle wall thickness new, t_{n} = $0.875\cdot0.165$ = 0.1444 in

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension:	0.74 · 18,900 = 13,986 psi
Nozzle wall in shear:	0.7 · 16,700 = 11,690 psi
Inner fillet weld in shear:	0.49 · 16,700 = 8,183 psi
Outer fillet weld in shear:	0.49 · 16,700 = 8,183 psi
Upper groove weld in tension:	0.74 · 16,700 = 12,358 psi

Strength of welded joints:

(1) Inner fillet weld in shear $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_i = \frac{\pi}{2} \cdot 10.75 \cdot 0.1875 \cdot 8,183 = 25,908.49 \text{ lb}_{\text{f}}$

(2) Outer fillet weld in shear $\frac{\pi}{2} \cdot \text{Pad OD} \cdot \text{Leg} \cdot S_o = \frac{\pi}{2} \cdot 13.75 \cdot 0.1339 \cdot 8,183 = 23,665.5 \text{ lb}_{f}$

(3) Nozzle wall in shear $\frac{\pi}{2} \cdot \text{Mean nozzle dia} \cdot t_n \cdot S_n = \frac{\pi}{2} \cdot 10.585 \cdot 0.165 \cdot 11,690 = 32,070.76 \text{ lb}_{\text{f}}$

(4) Groove weld in tension $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 10.75 \cdot 0.1875 \cdot 13,986 = 44,281.58 \text{ lb}_{\text{f}}$

(6) Upper groove weld in tension $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 10.75 \cdot 0.135 \cdot 12,358 \texttt{=} \texttt{28}, \texttt{171.52} \ \mathsf{lb}_\mathsf{f}$

Loading on welds per UG-41(b)(1)

$$W = (A - A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t - F \cdot t_r)) \cdot S_v$$

= (1.2373 - 0.7183 + 2 \cdot 0.165 \cdot 0.8836 \cdot (1 \cdot 0.1875 - 1 \cdot 0.1183)) \cdot 18,900
= 10,191.06 lb_f

 $W_{1-1} = (A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- $(0.1143 + 0.3579 + 0.0311 + 0.0158) \cdot 18,900$ =
- <u>9,810.2</u> lb_f =

 $W_{2-2} = (A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r_1}) \cdot S_v$

- $(0.1143 + 0 + 0.0311 + 0 + 2 \cdot 0.165 \cdot 0.1875 \cdot 0.8836) \cdot 18,900$ =
- 3,781.38 lbf =

 $W_{3-3} = (A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r_1}) \cdot S_v$

- $= (0.1143 + 0 + 0.3579 + 0.0311 + 0.0158 + 0 + 2 \cdot 0.165 \cdot 0.1875 \cdot 0.8836) \cdot 18,900$
- = <u>10,843.51</u> lb_f

Load for path 1-1 lesser of W or $W_{1-1} = 9,810.2 \text{ lb}_{f}$ Path 1-1 through (2) & (3) = 23,665.5 + 32,070.76 = $55,736.26 \text{ lb}_{f}$ Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or $W_{2-2} = 3,781.38 \text{ lb}_{f}$ Path 2-2 through (1), (4), (6) = 25,908.49 + 44,281.58 + 28,171.52 = <u>98,361.6 lb}_{f} Path 2-2 is stronger than W_{2-2} so it is acceptable per UG-41(b)(1).</u>

Load for path 3-3 lesser of W or $W_{3-3} = 10,191.06 \text{ lb}_f$ Path 3-3 through (2), (4) = 23,665.5 + 44,281.58 = <u>67,947.08</u> lb_f Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)						UG-45 Sui	mmary (in)	
For P = 90.26 psi @ 70 °F The opening is adequately reinforced						The nozzle p	asses UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
<u>1.2229</u>	<u>1.223</u>	<u>0.7334</u>	<u>0.107</u>		<u>0.3382</u>	<u>0.0444</u>	<u>0.1167</u>	0.1444

UG-41 Weld Failure Path Analysis Summary (lb _f)								
All failure paths are stronger than the applicable weld loads								
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength			
<u>10,179.74</u>	<u>9,791.5</u>	<u>55,736.26</u>	<u>3,761.31</u>	<u>100,938.83</u>	<u>10,824.81</u>	70,524.32		

Calculations for internal pressure 90.26 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[10.42, 5.21 + (0.165 0) + (0.1875 0) \right]$
- = 10.42 in

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min [2.5 · (t - C), 2.5 · (t_n - C_n) + t_e]

- $= \min \left[2.5 \cdot (0.1875 0), 2.5 \cdot (0.165 0) + 0.135 \right]$
- = 0.4688 in

Nozzle required thickness per UG-27(c)(1)

t_{rn} =

 $\frac{P\cdot R_n}{S_n\cdot E - 0.6\cdot P}$

- $= \frac{90.2585 \cdot 5.21}{16,700 \cdot 1 0.6 \cdot 90.2585}$
- = 0.0283 in

Required thickness t_r from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

= $\frac{90.2585 \cdot 25.8}{20,000 \cdot 1 - 0.6 \cdot 90.2585}$
= 0.1168 in

Required thickness t_r per Interpretation VIII-1-07-50

$$= \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{90.2585 \cdot 25.8}{20,000 \cdot 0.7 - 0.6 \cdot 90.2585}$$

= 0.167 in

tr

Area required per UG-37(c)

Allowable stresses: $S_n = 16,700$, $S_v = 20,000$, $S_p = 16,700$ psi

$$\begin{aligned} f_{r1} &= \text{lesser of 1 or } \frac{S_n}{S_v} = 0.835 \\ f_{r2} &= \text{lesser of 1 or } \frac{S_n}{S_v} = 0.835 \\ f_{r3} &= \text{lesser of } f_{r2} \text{ or } \frac{S_p}{S_v} = 0.835 \\ f_{r4} &= \text{lesser of 1 or } \frac{S_p}{S_v} = 0.835 \\ A &= d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1}) \\ &= 10.42 \cdot 0.1168 \cdot 1 + 2 \cdot 0.165 \cdot 0.1168 \cdot 1 \cdot (1 - 0.835) \\ &= 1.2229 \text{ in}^2 \end{aligned}$$

Area available from FIG. UG-37.1

 A_1 = larger of the following = 0.7334 in²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- = $10.42 \cdot (1 \cdot 0.1875 1 \cdot 0.1168) 2 \cdot 0.165 \cdot (1 \cdot 0.1875 1 \cdot 0.1168) \cdot (1 0.835)$
- = 0.7334 in²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r_1})$$

- $= 2 \cdot (0.1875 + 0.165) \cdot (1 \cdot 0.1875 1 \cdot 0.1168) 2 \cdot 0.165 \cdot (1 \cdot 0.1875 1 \cdot 0.1168) \cdot (1 0.835)$
- = 0.046 in²

 A_2 = smaller of the following= <u>0.107</u> in²

- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= 5 \cdot (0.165 0.0283) \cdot 0.835 \cdot 0.1875$
- = 0.107 in²
- $= 2 \cdot (t_n t_{rn}) \cdot (2.5 \cdot t_n + t_e) \cdot f_{r2}$
- = $2 \cdot (0.165 0.0283) \cdot (2.5 \cdot 0.165 + 0.135) \cdot 0.835$
- = 0.125 in²

 $A_{41} = Leg^2 \cdot f_{r3}$

- = 0.1875 $^{2} \cdot 0.835$
- = 0.0294 in²

$$A_{42} = Leg^2 \cdot f_{r4}$$

- = 0.1339² · 0.835
- = <u>0.015</u> in²

$$\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r_4}$$

- $= (13.75 10.42 2 \cdot 0.165) \cdot 0.135 \cdot 0.835$
- = <u>0.3382</u> in²

 $Area = A_1 + A_2 + A_{41} + A_{42} + A_5$

= 0.7334 + 0.107 + 0.0294 + 0.015 + 0.3382

= <u>1.223</u> in²

As Area >= A the reinforcement is adequate.

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{90.2585 \cdot 5.21}{16{,}700 \cdot 1 - 0.6 \cdot 90.2585} + 0$
	=	0.0283 in
t_a	=	$\max\left[t_{a\mathrm{UG-27}},t_{a\mathrm{UG-22}}\right]$
	=	$\max [0.0283, 0]$
	=	0.0283 in
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{90.2585\cdot 25.8}{20,000\cdot 1-0.6\cdot 90.2585}+0$
	=	0.1167 in
t_{b1}	=	
t_{b1}		0.1167 in
t_{b1}	=	0.1167 in $\max[t_{b1}, t_{b{ m UG16}}]$
t_{b1}	=	0.1167 in $\max[t_{b1}, t_{b\text{UG16}}]$ $\max[0.1167, 0.0625]$
	=	0.1167 in $\max[t_{b1}, t_{bUG16}]$ $\max[0.1167, 0.0625]$ 0.1167 in
		0.1167 in $\max [t_{b1}, t_{bUG16}]$ $\max [0.1167, 0.0625]$ 0.1167 in $\min [t_{b3}, t_{b1}]$
	= = =	0.1167 in max $[t_{b1}, t_{bUG16}]$ max $[0.1167, 0.0625]$ 0.1167 in min $[t_{b3}, t_{b1}]$ min $[0.3194, 0.1167]$
t_b	=	0.1167 in $\max[t_{b1}, t_{bUG16}]$ $\max[0.1167, 0.0625]$ 0.1167 in $\min[t_{t3}, t_{b1}]$ $\min[0.3194, 0.1167]$ 0.1167 in

Available nozzle wall thickness new, $t_{\textrm{n}}$ = $0.875 \cdot 0.165$ = 0.1444 in

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension:	$0.74 \cdot 20,000 =$	14,800 psi
Nozzle wall in shear:	$0.7 \cdot 16,700 =$	11,690 psi
Inner fillet weld in shear:	$0.49 \cdot 16,700 =$	8,183 psi
Outer fillet weld in shear:	0.49 · 16,700 =	8,183 psi
Upper groove weld in tension:	0.74 · 16,700 =	12,358 psi

Strength of welded joints:

(1) Inner fillet weld in shear $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_i = \frac{\pi}{2} \cdot 10.75 \cdot 0.1875 \cdot 8,183 = 25,908.49 \text{ lb}_{\text{f}}$

(2) Outer fillet weld in shear

 $\frac{\pi}{2} \cdot \operatorname{Pad} \operatorname{OD} \cdot \operatorname{Leg} \cdot S_o = \frac{\pi}{2} \cdot 13.75 \cdot 0.1339 \cdot 8{,}183 = \textbf{23,665.5} \text{ lb}_{\mathsf{f}}$

(3) Nozzle wall in shear

 $\frac{\pi}{2}\cdot$ Mean nozzle dia $\cdot\,t_n\cdot S_n\,=\,\frac{\pi}{2}\cdot 10.585\cdot 0.165\cdot 11,\!690$ = 32,070.76 lbf

(4) Groove weld in tension

 $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 10.75 \cdot 0.1875 \cdot 14,\!800 = \textbf{46},\!\textbf{858.82} ~ \textsf{lb}_{\sf f}$

(6) Upper groove weld in tension $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 10.75 \cdot 0.135 \cdot 12,358 = 28,171.52 \text{ lb}_{\text{f}}$

Loading on welds per UG-41(b)(1)

$$W = (A - A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t - F \cdot t_r)) \cdot S_v$$

= (1.2229 - 0.7334 + 2 \cdot 0.165 \cdot 0.835 \cdot (1 \cdot 0.1875 - 1 \cdot 0.1168)) \cdot 20,000
= 10.179.74 lbf

 $W_{1-1} = (A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- $= (0.107 + 0.3382 + 0.0294 + 0.015) \cdot 20,000$
- = <u>9,791.5</u> lb_f

 $W_{2-2} = (A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- $= (0.107 + 0 + 0.0294 + 0 + 2 \cdot 0.165 \cdot 0.1875 \cdot 0.835) \cdot 20,000$
- = <u>3,761.31</u> lb_f

 $W_{3-3} = (A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

 $= (0.107 + 0 + 0.3382 + 0.0294 + 0.015 + 0 + 2 \cdot 0.165 \cdot 0.1875 \cdot 0.835) \cdot 20,000$

= <u>10,824.81</u> lb_f

Load for path 1-1 lesser of W or $W_{1-1} = 9,791.5 \text{ lb}_f$ Path 1-1 through (2) & (3) = 23,665.5 + 32,070.76 = $55,736.26 \text{ lb}_f$ Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or $W_{2-2} = 3,761.31 \text{ lb}_f$ Path 2-2 through (1), (4), (6) = 25,908.49 + 46,858.82 + 28,171.52 = $100,938.83 \text{ lb}_f$ Path 2-2 is stronger than W_{2-2} so it is acceptable per UG-41(b)(1).

Load for path 3-3 lesser of W or $W_{3-3} = 10,179.74 \text{ lb}_{f}$ Path 3-3 through (2), (4) = 23,665.5 + 46,858.82 = $70,524.32 \text{ lb}_{f}$ Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

Reinforcement Calculations for MAEP

U	IG-37 Are	UG-45 Sur	nmary (in)					
For Pe = 15.71 psi @ 300 °F The opening is adequately reinforced							The nozzle p	asses UG-45
A required	A available	A ₁	A ₂	A ₂ A ₃ A ₅ A welds t _{req}				t _{min}
<u>0.8252</u>	<u>0.8254</u>	<u>0.3082</u>	<u>0.1124</u>		<u>0.3579</u>	<u>0.0469</u>	<u>0.0625</u>	0.1444

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary								
Weld description	Actual weld size (in)	Status						
Nozzle to pad fillet (Leg ₄₁)	<u>0.0945</u>	0.1312	weld size is adequate					
Pad to shell fillet (Leg ₄₂)	<u>0.0675</u>	0.0937	weld size is adequate					

Calculations for external pressure 15.71 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

 $L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[10.42, 5.21 + (0.165 0) + (0.1875 0) \right]$
- = 10.42 in

Outer Normal Limit of reinforcement per UG-40

- L_{H} = min $[2.5 \cdot (t C), 2.5 \cdot (t_n C_n) + t_e]$
 - $= \min \left[2.5 \cdot (0.1875 0), 2.5 \cdot (0.165 0) + 0.135 \right]$
 - = 0.4688 in

Nozzle required thickness per UG-28 trn = 0.0294 in

From UG-37(d)(1) required thickness $t_r = 0.1578$ in

Area required per UG-37(d)(1)

Allowable stresses: $S_n = 16,700$, $S_v = 18,900$, $S_p = 16,700$ psi

$$f_{r1} = \text{lesser of 1 or } \frac{S_n}{S_v} = 0.8836$$

$$f_{r2} = \text{lesser of 1 or } \frac{S_n}{S_v} = 0.8836$$

$$f_{r3} = \text{lesser of } f_{r2} \text{ or } \frac{S_p}{S_v} = 0.8836$$

$$f_{r4} = \text{lesser of 1 or } \frac{S_p}{S_v} = 0.8836$$

 $\mathsf{A} = 0.5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r_1}))$

- $= 0.5 \cdot (10.42 \cdot 0.1578 \cdot 1 + 2 \cdot 0.165 \cdot 0.1578 \cdot 1 \cdot (1 0.8836))$
- = 0.8252 in²

Area available from FIG. UG-37.1

 A_1 = larger of the following = <u>0.3082</u> in²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= 10.42 \cdot (1 \cdot 0.1875 1 \cdot 0.1578) 2 \cdot 0.165 \cdot (1 \cdot 0.1875 1 \cdot 0.1578) \cdot (1 0.8836)$
- = 0.3082 in²
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= 2 \cdot (0.1875 + 0.165) \cdot (1 \cdot 0.1875 1 \cdot 0.1578) 2 \cdot 0.165 \cdot (1 \cdot 0.1875 1 \cdot 0.1578) \cdot (1 0.8836)$
- = 0.0198 in²

 A_2 = smaller of the following = <u>0.1124</u> in²

- = $5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= 5 \cdot (0.165 0.0294) \cdot 0.8836 \cdot 0.1875$
- = 0.1124 in²
- $= 2 \cdot (t_n t_{rn}) \cdot (2.5 \cdot t_n + t_e) \cdot f_{r2}$
- = $2 \cdot (0.165 0.0294) \cdot (2.5 \cdot 0.165 + 0.135) \cdot 0.8836$
- = 0.1312 in²

 $A_{41} = Leg^2 \cdot f_{r3}$

- = 0.1875 $^{2} \cdot 0.8836$
- = <u>0.0311</u> in²

 $A_{42} = Leg^2 \cdot f_{r4}$

- = 0.1339² · 0.8836
- = <u>0.0158</u> in²

$$\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r_4}$$

- $= (13.75 10.42 2 \cdot 0.165) \cdot 0.135 \cdot 0.8836$
- = 0.3579 in²

$$Area = A_1 + A_2 + A_{41} + A_{42} + A_5$$

= 0.3082 + 0.1124 + 0.0311 + 0.0158 + 0.3579
= 0.8254 in²

As Area >= A the reinforcement is adequate.

UW-16(c)(2) Weld Check

 Outer fillet: $t_{\min} = \min [0.75, t_e, t] = 0.135$ in

 $t_{w(\min)} = 0.5 \cdot t_{\min} = 0.0675$ in

 $t_{w(\mathit{actual})} = 0.7 \cdot \mathrm{Leg} = 0.7 \cdot 0.1339 = 0.0937$ in

UG-45 Nozzle Neck Thickness Check

$t_{a { m UG-} 28}$	=	0.0294 in
t_a	=	$\max\left[t_{a\mathrm{UG-28}},t_{a\mathrm{UG-22}}\right]$
	=	$\max [0.0294, 0]$
	=	0.0294 in
t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{15.7101\cdot 25.8}{18,900\cdot 1-0.6\cdot 15.7101}+0$
	=	0.0215 in
$t_{b\!2}$	=	$\max\left[t_{b2},t_{b\mathrm{UG16}}\right]$
	=	$\max\ [0.0215, 0.0625]$
	=	0.0625 in
t_b	=	$\min \left[t_{b3} , t_{b2} \right]$
	=	min $[0.3194, 0.0625]$
	=	0.0625 in
$t_{ m UG-45}$	=	$\max\ [t_a,t_b]$
	=	$\max [0.0294, 0.0625]$
	=	<u>0.0625</u> in

Available nozzle wall thickness new, t_{n} = $0.875 \cdot 0.165$ = 0.1444 in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 300 °F) UG-28(c)

 $\frac{L}{D_o} = \frac{6.5619}{10.75} = 0.6104$ $\frac{D_o}{t} = \frac{10.75}{0.0294} = 366.2566$

From table G: A = 0.000326From table HA-3: B = 4,315.2581 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 4,315.26}{3 \cdot (10.75/0.0294)} = 15.71$$
 psi

Design thickness for external pressure $P_a = 15.71$ psi

 $t_a = t + \text{Corrosion} = 0.0294 + 0 = 0.0294$ "

Nozzle P3 (P3)

ASME Section VIII I	Division 1, 2019 Edition						
Note: round inside edges per UG-76(c)							
Location a	nd Orientation						
Located on	Cylinder #1						
Orientation	0°						
Nozzle center line offset to datum line	16.625"						
End of nozzle to shell center	26.7908"						
Passes through a Category A joint	No						
N	ozzle						
Service	Pressure Relief Valve (PRV)						
Description	NPS 0.75 Class 3000 - Threaded Half Coupling						
Access opening	No						
Material specification	SA-182 F304L <= 5 (II-D p. 84, In. 29)						
Inside diameter, new	1.06"						
Nominal wall thickness	0.16"						
Corrosion allowance	0"						
Projection available outside vessel, Lpr	0.8033"						
Local vessel minimum thickness	0.1875"						
Liquid static head included	0 psi						
Longitudinal joint efficiency	1						
v	Velds						
Inner fillet, Leg ₄₁	0.1875"						
Nozzle to vessel groove weld	0.1875"						

UHA-51 Material Toughness Requirements Nozzle					
$t_r = rac{40.27 \cdot 0.53}{16{,}700 \cdot 1 - 0.6 \cdot 40.27} =$	0.0013"				
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0013 \cdot 1}{0.16 - 0} =$	0.008				
Impact test exempt per UHA-51(g) (coincident ratio = 0.008)					
Rated MDMT =	-320°F				
Material is exempt from impact testing at the Design MDMT of -20°F.					

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)						UG-44 Sumi	mary (in)	
For P = 136.76 psi @ 300 °F						The nozzle pas	ses UG-44	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a)						<u>0.0625</u>	0.16

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary								
Weld description	Neld description Required weld throat size (in) Actual weld throat size (in) Status							
Nozzle to shell fillet (Leg ₄₁)	<u>0.0937</u>	0.1312	weld size is adequate					

Calculations for internal pressure 136.76 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

$$L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$$

- $= \max \left[1.06, 0.53 + (0.16 0) + (0.1875 0) \right]$
- = 1.06 in

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min \left[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e \right]$$

- = min $[2.5 \cdot (0.1875 0), 2.5 \cdot (0.16 0) + 0]$
- = 0.4 in

Nozzle required thickness per UG-27(c)(1)

 $t_{rn} = \frac{P \cdot R_n}{S_r \cdot E - 0.6}$

 $= \frac{\overline{S_n \cdot E - 0.6 \cdot P}}{136.7576 \cdot 0.53}$ $= \frac{136.7576 \cdot 0.53}{16,700 \cdot 1 - 0.6 \cdot 136.7576}$

= 0.0044 in

Required thickness tr from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

=
$$\frac{136.7576 \cdot 25.8}{18,900 \cdot 1 - 0.6 \cdot 136.7576}$$

= 0.1875 in

Required thickness tr per Interpretation VIII-1-07-50

$$= \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

= $\frac{136.7576 \cdot 25.8}{18,900 \cdot 0.7 - 0.6 \cdot 136.7576}$
= 0.2684 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

tr

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-44 Thickness Check - ASME B16.11 Coupling

 $= \max [0.0056, 0.0625] \\ = 0.0625 \text{ in}$

Available nozzle wall thickness new, $t_n = 0.16$ in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)						UG-44 Sumi	mary (in)	
For P = 144.72 psi @ 70 °F						The nozzle pas	ses UG-44	
A required						t _{req}	t _{min}	
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a)					36(c)(3)(a)	<u>0.0625</u>	0.16

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

Calculations for internal pressure 144.72 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[1.06, 0.53 + (0.16 0) + (0.1875 0) \right]$
- = 1.06 in

Outer Normal Limit of reinforcement per UG-40

 $L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (0.1875 0), 2.5 \cdot (0.16 0) + 0 \right]$
- = 0.4 in

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$

= $\frac{144.7199 \cdot 0.53}{16,700 \cdot 1 - 0.6 \cdot 144.7199}$
= 0.0046 in

Required thickness t_r from UG-37(a)

 $t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$ = $\frac{144.7199 \cdot 25.8}{20,000 \cdot 1 - 0.6 \cdot 144.7199}$ = 0.1875 in

Required thickness tr per Interpretation VIII-1-07-50

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

= $\frac{144.7199 \cdot 25.8}{20,000 \cdot 0.7 - 0.6 \cdot 144.7199}$
= 0.2684 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UG-44 Thickness Check - ASME B16.11 Coupling

Available nozzle wall thickness new, $t_n = 0.16$ in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)						UG-45 Sumi	mary (in)	
For Pe = 23.85 psi @ 300 °F						The nozzle pas	sses UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a)						<u>0.0625</u>	0.16

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary								
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status					
Nozzle to shell fillet (Leg ₄₁)	<u>0.0937</u>	0.1312	weld size is adequate					

Calculations for external pressure 23.85 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_n + (t_n - C_n) + (t - C)]$

- = $\max [1.06, 0.53 + (0.16 0) + (0.1875 0)]$
- = 1.06 in

Outer Normal Limit of reinforcement per UG-40

 $L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- = min $[2.5 \cdot (0.1875 0), 2.5 \cdot (0.16 0) + 0]$
- = 0.4 in

Nozzle required thickness per UG-28 trn = 0.0047 in

From UG-37(d)(1) required thickness t_r = 0.1875 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [0.75, t_n, t] = 0.16$ in $t_{c(\min)} = \min [0.09375, 0.7 \cdot t_{\min}] = 0.0937$ in $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 0.1875 = 0.1313$ in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-28}}$	=	0.0047 in
t_a	=	$\max\left[t_{a\mathrm{UG-28}},t_{a\mathrm{UG-22}}\right]$
	=	$\max[0.0047, 0]$

= 0.0047 in

t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{23.8478 \cdot 25.8}{18,900 \cdot 1 - 0.6 \cdot 23.8478} + 0$
	=	0.0326 in
$t_{b\!2}$	=	$\max\left[t_{b2},t_{b\mathrm{UG16}}\right]$
	=	$\max\ [0.0326, 0.0625]$
	=	0.0625 in
t_b	=	$\min \left[t_{b3} , t_{b2} \right]$
	=	$\min\ [0.1225, 0.0625]$
	=	0.0625 in
$t_{ m UG-45}$	=	$\max\ [t_a,t_b]$
	=	$\max\ [0.0047, 0.0625]$
	=	<u>0.0625</u> in

Available nozzle wall thickness new, $t_n = 0.16$ in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 300 °F) UG-28(c)

 $\frac{L}{D_o} = \frac{0.8124}{1.38} = 0.5887$ $\frac{D_o}{t} = \frac{1.38}{0.0047} = 295.9207$

From table G: A = 0.000453From table HA-3: B = 5,292.8081 psi

 $P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 5{,}292.81}{3 \cdot (1{,}38/0.0047)} = 23.85 \text{ psi}$

Design thickness for external pressure $P_a = 23.85$ psi

 $t_a = t + \text{Corrosion} = 0.0047 + 0 = 0.0047$ "

Nozzle P6 (P6)

ASME Section VIII E	Division 1, 2019 Edition					
0,1875	0.1875					
Note: round inside edges per UG-76(c)						
Location a	nd Orientation					
Located on	Cylinder #1					
Orientation	180°					
Nozzle center line offset to datum line	16.625"					
End of nozzle to shell center	26.7339"					
Passes through a Category A joint	No					
N	ozzle					
Service	Drain (DRN)					
Description	NPS 0.5 Class 3000 - Threaded Half Coupling					
Access opening	No					
Material specification	SA-182 F304L <= 5 (II-D p. 84, In. 29)					
Inside diameter, new	0.84"					
Nominal wall thickness	0.14"					
Corrosion allowance	0"					
Projection available outside vessel, Lpr	0.7464"					
Local vessel minimum thickness	0.1875"					
Liquid static head included	0 psi					
Longitudinal joint efficiency	1					
	/elds					
Inner fillet, Leg ₄₁						
	0.1875"					

UHA-51 Material Toughness Requirements Nozzle				
$t_r = \frac{40.27 \cdot 0.42}{16,700 \cdot 1 - 0.6 \cdot 40.27} =$	0.001"			
$egin{array}{llllllllllllllllllllllllllllllllllll$	0.0073			
Impact test exempt per UHA-51(g) (coincident ratio = 0.0073)				
Rated MDMT =	-320°F			
Material is exempt from impact testing at the Design MDMT of -20°F.				

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)						UG-44 Sumi	mary (in)	
	For P = 136.76 psi @ 300 °F					The nozzle pas	ses UG-44	
A required							t _{req}	t _{min}
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a)						<u>0.0625</u>	0.14

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary							
Weld description Required weld throat size (in) Actual weld throat size (in) Status							
Nozzle to shell fillet (Leg ₄₁)	<u>0.0937</u>	0.1312	weld size is adequate				

Calculations for internal pressure 136.76 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

$$L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$$

- $\max \left[0.84, 0.42 + (0.14 0) + (0.1875 0) \right]$ =
- 0.84 in =

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min \left[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e \right]$$

- $\min \left[2.5 \cdot (0.1875 0), 2.5 \cdot (0.14 0) + 0 \right]$ =
- = 0.35 in

Nozzle required thickness per UG-27(c)(1)

t_{rn} =

 $\frac{P\cdot R_n}{S_n\cdot E - 0.6\cdot P}$ $136.7576\cdot 0.42$ = $16,700 \cdot 1 - 0.6 \cdot 136.7576$

0.0035 in =

Required thickness tr from UG-37(a)

$$t_{\rm r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{136.7576 \cdot 25.8}{18,900 \cdot 1 - 0.6 \cdot 136.7576}$$
$$= 0.1875 \text{ in}$$

Required thickness tr per Interpretation VIII-1-07-50

$$= \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

= $\frac{136.7576 \cdot 25.8}{18,900 \cdot 0.7 - 0.6 \cdot 136.7576}$
= 0.2684 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

tr

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-44 Thickness Check - ASME B16.11 Coupling

$$egin{array}{rcl} t_{a{
m App}\,1\mathchar{
m 1-1}}&=&rac{P\cdot R_o}{S_n\cdot E+0.4\cdot P}+{
m Corrosion}\ &=&rac{136.7576\cdot 0.56}{16,700\cdot 1+0.4\cdot 136.7576}+0\ &=&0.0046\ {
m in}\ &t_{a{
m UG-44}}&=&\max\left[t_{a{
m App}\,1\mathchar{
m 1-1}},\ t_{b{
m UG16}}
ight] \end{array}$$

 $= \max \left[0.0046, \ 0.0625 \right]$

= <u>0.0625</u> in

Available nozzle wall thickness new, $t_n = 0.14$ in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)						UG-44 Sumi	mary (in)	
	For P = 144.72 psi @ 70 °F						The nozzle pas	ses UG-44
A required							t _{req}	t _{min}
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a)						<u>0.0625</u>	0.14

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

Calculations for internal pressure 144.72 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

- L_{R} = max $[d, R_n + (t_n C_n) + (t C)]$
 - $= \max \left[0.84, 0.42 + (0.14 0) + (0.1875 0) \right]$
 - = 0.84 in

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min [2.5 · (t - C), 2.5 · (t_n - C_n) + t_e]

- = min $[2.5 \cdot (0.1875 0), 2.5 \cdot (0.14 0) + 0]$
- = 0.35 in

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$

= $\frac{144.7199 \cdot 0.42}{16,700 \cdot 1 - 0.6 \cdot 144.7199}$
= 0.0037 in

Required thickness t_r from UG-37(a)

 $t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$ = $\frac{144.7199 \cdot 25.8}{20,000 \cdot 1 - 0.6 \cdot 144.7199}$ = 0.1875 in

Required thickness tr per Interpretation VIII-1-07-50

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

= $\frac{144.7199 \cdot 25.8}{20,000 \cdot 0.7 - 0.6 \cdot 144.7199}$
= 0.2684 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UG-44 Thickness Check - ASME B16.11 Coupling

Available nozzle wall thickness new, $t_n = 0.14$ in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)						UG-45 Sumi	mary (in)	
	For Pe = 23.85 psi @ 300 °F					The nozzle pas	sses UG-45	
A required							t _{req}	t _{min}
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a)						<u>0.0625</u>	0.14

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary						
Weld description Required weld throat size (in) Actual weld throat size (in) Status						
Nozzle to shell fillet (Leg ₄₁)	<u>0.0937</u>	0.1312	weld size is adequate			

Calculations for external pressure 23.85 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[0.84, 0.42 + (0.14 0) + (0.1875 0) \right]$
- = 0.84 in

Outer Normal Limit of reinforcement per UG-40

 $L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- = min $[2.5 \cdot (0.1875 0), 2.5 \cdot (0.14 0) + 0]$
- = 0.35 in

Nozzle required thickness per UG-28 trn = 0.0039 in

From UG-37(d)(1) required thickness t_r = 0.1875 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [0.75, t_n, t] = 0.14$ in $t_{c(\min)} = \min [0.09375, 0.7 \cdot t_{\min}] = 0.0937$ in $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 0.1875 = 0.1313$ in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a { m UG-} 28}$	=	0.0039 in
t_a	=	$\max\left[t_{a\mathrm{UG-28}},t_{a\mathrm{UG-22}}\right]$
	=	$\max [0.0039, 0]$

= 0.0039 in

t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{23.8478 \cdot 25.8}{18,900 \cdot 1 - 0.6 \cdot 23.8478} + 0$
	=	0.0326 in
$t_{b\!2}$	=	$\max\left[t_{b2},t_{b\mathrm{UG16}}\right]$
	-	$\max\ [0.0326, 0.0625]$
	=	0.0625 in
t_b	=	$\min \; [t_{b3}, t_{b2}]$
	=	$\min\ [0.1164, 0.0625]$
	=	0.0625 in
$t_{ m UG-45}$	=	$\max\ [t_a,t_b]$
	=	$\max\ [0.0039, 0.0625]$
	=	<u>0.0625</u> in

Available nozzle wall thickness new, $t_{\textrm{n}}$ = 0.14 in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 300 °F) UG-28(c)

 $\frac{L}{D_o} = \frac{0.7525}{1.12} = 0.6718$ $\frac{D_o}{t} = \frac{1.12}{0.0039} = 285.9271$

From table G: A = 0.000419From table HA-3: B = 5,112.9845 psi

 $P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 5{,}112.98}{3 \cdot (1.12/0.0039)} = 23.84 \text{ psi}$

Design thickness for external pressure $P_a = 23.84$ psi

 $t_a = t + \text{Corrosion} = 0.0039 + 0 = 0.0039$ "

Straight Flange on F&D Head #2

	ASME Section VIII Division 1, 2019 Edition									
Com	ponent		Cylinder							
Ma	terial	SA	x-240 304 (II-D p. 88,	ln. 37)						
Impact Tested	Normalized	Fine Grain Practice	Maximize MDMT/ No MAWP							
No	No	No	No	No						
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)						
Int	ernal	25	300	-20						
Ext	ernal	15	300	-20						
Static Liquid Head										
Con	dition	P _s (psi) H _s (in)		SG						
Test h	orizontal	1.9	1							
		Dimensio	ons							
Inner I	Diameter		51.6"							
Le	ngth	1"								
Nominal	Thickness		0.2"							
Corrosion	Inner	0"								
Corrosion	Outer	0"								
		Weight and C	apacity							
		Wei	ght (lb)	Capacity (US gal)						
N	lew	9.44 9.05				9.44		9.44 9		9.05
Cor	roded	9.44 9.05								
		Radiogra	phy							
Longitud	dinal seam	None UW-11(c) Type 1								
Left Circum	ferential seam	None UW-11(c) Type 1								

Results Summary				
Governing condition	External pressure			
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"			
Design thickness due to internal pressure (t)	<u>0.0489"</u>			
Design thickness due to external pressure (t_e)	<u>0.1548"</u>			
Maximum allowable working pressure (MAWP)	<u>102.08 psi</u>			
Maximum allowable pressure (MAP)	<u>108.02 psi</u>			
Maximum allowable external pressure (MAEP)	<u>27.19 psi</u>			
Rated MDMT	-320 °F			

UHA-51 Material Toughness Requirements			
$t_r = \frac{40.27 \cdot 25.8}{20,000 \cdot 0.7 - 0.6 \cdot 40.27} =$	0.0743"		
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0743 \cdot 0.8}{0.2 - 0} =$	0.2974		
Impact test exempt per UHA-51(g) (coincident ratio = 0.2974)			
Rated MDMT =	-320°F		
Material is exempt from impact testing at the Design MDMT of -20°F.			

Design thickness, (at 300 °F) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{25 \cdot 25.8}{18,900 \cdot 0.70 - 0.60 \cdot 25} + 0 = \underline{0.0489}"$$

Maximum allowable working pressure, (at 300 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{18,900 \cdot 0.70 \cdot 0.2}{25.8 + 0.60 \cdot 0.2} - 0 = \underline{102.08} \text{ psi}$$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{20,000 \cdot 0.70 \cdot 0.2}{25.8 + 0.60 \cdot 0.2} = \underline{108.02} \text{ psi}$

External Pressure, (Corroded & at 300 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{40.651}{52} = 0.7818$$
$$\frac{D_o}{t} = \frac{52}{0.1548} = 335.9886$$

From table G: A = 0.000287From table HA-1: B = 3,779.872 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 3,779.87}{3 \cdot (52/0.1548)} = 15 \text{ psi}$$

Design thickness for external pressure P_a = 15 psi

 $t_a = t + \text{Corrosion} = 0.1548 + 0 = 0.1548$ "

Maximum Allowable External Pressure, (Corroded & at 300 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{40.651}{52} = 0.7818$$
$$\frac{D_o}{t} = \frac{52}{0.2} = 260.0000$$

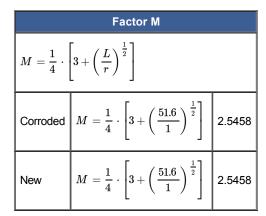
From table G: A = 0.000412From table HA-1: B = 5,302.6411 psi

 $P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 5{,}302.64}{3 \cdot (52/0.2)} = rac{27.19}{27.19} \, \mathrm{psi}$

% Forming strain - UHA-44(a)(2)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 0.2}{25.9}\right) \cdot \left(1 - \frac{25.9}{\infty}\right) = 0.3861\%$$

F&D Head #2


ASME Section VIII Division 1, 2019 Edition						
Com	ponent		F&D Head			
Mat	terial	SA-240 304 (II-D p. 88, In. 37)				
Attac	hed To	Cylinder #1				
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP		
No	No	No	No	No		
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)		
Inte	ernal	25	300	-20		
Ext	ernal	15	300	20		
		Static Liq	uid Head			
Con	dition	P _s (psi)	H _s (in)	SG		
Test h	orizontal	1.9	52.5908	1		
		Dimen	sions			
Inner [Diameter	51.6"				
Crown Radius L 51.6"						
Knuckle	Knuckle Radius r 1"					
Minimum	Thickness	0.2"				
Corrosion	Inner	0"				
	Outer	0"				
Lenç	gth L _{sf}	1"				
Nominal T	hickness t _{sf}		0.2"			
Weight and Capacity						
		Weight (lb) ¹		Capacity (US gal) ¹		
N	New 145.36		46.32			
Cor	roded	145.36		46.32		
Radiography						
Categor	y A joints	None UW-11(c) Type 1				
Head to s	Head to shell seam None UW-11(c) Type 1			pe 1		

¹ includes straight flange

Results Summary			
Governing condition	external pressure		
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"		
Design thickness due to internal pressure (t)	<u>0.1242</u> "		
Design thickness due to external pressure (t_e)	<u>0.1563</u> "		
Maximum allowable working pressure (MAWP)	<u>40.27</u> psi		
Maximum allowable pressure (MAP)	<u>42.62</u> psi		
Maximum allowable external pressure (MAEP)	<u>22.11</u> psi		
Rated MDMT	-320°F		

Note: Endnote 90 used to determine allowable stress.

UHA-51 Material Toughness Requirements			
$t_r = rac{40.27 \cdot 51.6 \cdot 1}{2 \cdot 20,000 \cdot 0.7 - 0.2 \cdot 40.27} =$	0.0742"		
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0742 \cdot 0.8}{0.2 - 0} =$	0.297		
Impact test exempt per UHA-51(g) (coincident ratio = 0.297)			
Rated MDMT =	-320°F		
Material is exempt from impact testing at the Design MDMT of -20°F.			

Design thickness for internal pressure, (Corroded at 300 °F) Appendix 1-4(d)

$$t = \frac{P \cdot L \cdot M}{2 \cdot S \cdot E - 0.2 \cdot P} + \text{Corrosion} = \frac{25 \cdot 51.6 \cdot 2.5458}{2 \cdot 18,900 \cdot 0.7 - 0.2 \cdot 25} + 0 = \underline{0.1241}^{"}$$

Maximum allowable working pressure, (Corroded at 300 °F) Appendix 1-4(d)

$$P = \frac{2 \cdot S \cdot E \cdot t}{L \cdot M + 0.2 \cdot t} - P_s = \frac{2 \cdot 18,900 \cdot 0.7 \cdot 0.2}{51.6 \cdot 2.5458 + 0.2 \cdot 0.2} - 0 = \underline{40.27} \text{ psi}$$

Maximum allowable pressure, (New at 70 °F) Appendix 1-4(d)

$$P = \frac{2 \cdot S \cdot E \cdot t}{L \cdot M + 0.2 \cdot t} - P_s = \frac{2 \cdot 20,000 \cdot 0.7 \cdot 0.2}{51.6 \cdot 2.5458 + 0.2 \cdot 0.2} - 0 = \underline{42.62} \text{ psi}$$

Design thickness for external pressure, (Corroded at 300 °F) UG-33(e)

Equivalent outside spherical radius (R_o) = Outside crown radius $= 51.8~{\rm in}$

$$A = rac{0.125}{R_o \ / \ t} = rac{0.125}{51.8 \ / \ 0.156236} = 0.000377$$

From Table HA-1:B = 4,973.2519 psi

$$P_a = {B \over R_o \ / \ t} = {4,973.2519 \over 51.8 \ / \ 0.1562} = 15 {
m psi}$$

t = 0.1562" + Corrosion = 0.1562" + 0" = 0.1562"

Check the external pressure per UG-33(a)(1) Appendix 1-4(d)

$$t = \frac{1.67 \cdot P_e \cdot L \cdot M}{2 \cdot S \cdot E - 0.2 \cdot 1.67 \cdot P_e} + \text{Corrosion} = \frac{1.67 \cdot 15 \cdot 51.6 \cdot 2.5458}{2 \cdot 18,900 \cdot 1 - 0.2 \cdot 1.67 \cdot 15} + 0 = 0.08717$$

Maximum Allowable External Pressure, (Corroded at 300 °F) UG-33(e)

Equivalent outside spherical radius (R_0) = Outside crown radius $= 51.8~{\rm in}$

$$A = \frac{0.125}{R_o \ / \ t} = \frac{0.125}{51.8 \ / \ 0.2} = 0.000483$$

From Table HA-1:B = 5,726.9877 psi

$$P_a = \frac{B}{R_o \ / \ t} = \frac{5{,}726{.}9877}{51.8 \ / \ 0.2} = 22.1119 \ \text{psi}$$

Check the Maximum External Pressure, UG-33(a)(1) Appendix 1-4(d)

$$P = \frac{2 \cdot S \cdot E \cdot t}{(L \cdot M + 0.2 \cdot t) \cdot 1.67} = \frac{2 \cdot 18,900 \cdot 1 \cdot 0.2}{(51.6 \cdot 2.5458 + 0.2 \cdot 0.2) \cdot 1.67} = 34.45 \text{ psi}$$

The maximum allowable external pressure (MAEP) is 22.11 psi.

% Forming strain - UHA-44(a)(2)

$$EFE = \left(\frac{75 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{75 \cdot 0.2}{1.1}\right) \cdot \left(1 - \frac{1.1}{\infty}\right) = 13.6364\%$$