
Seitz Stainless

Avon, Minnesota

ASME BPV VIII-1 2019 Heat Exchanger Design Calculations

NB 355 HEAT EXCHANGER MAIN BODY ONLY CALCULATIONS

Vessel No:	Horizontal Heat Exchanger NB # 335
------------	------------------------------------

Customer: Caloris Engineering, Easton, MD

Contract: Merit Functional Foods

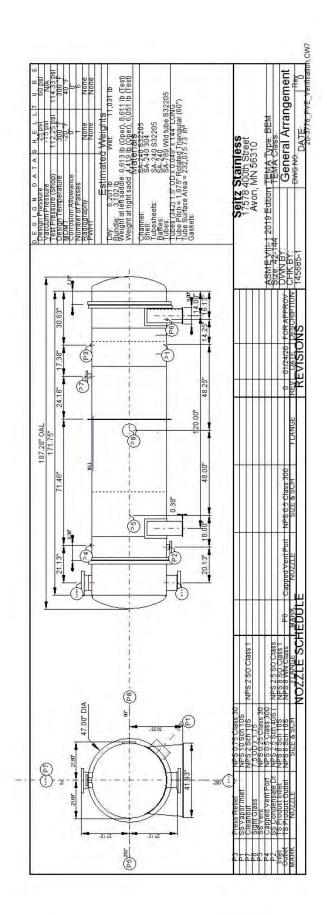
Item: Horizontal Heat Exchanger

Date: May, 2020

Designer:

Fabricated to ASME BPV Section VIII Div 1, 2019 Rules

A 52" diameter bustle (vapor band), 36" long is included in the design, which is not shown in this calculation. The vapor band is treated by Code as a conventional jacket, and is subject to the rules and calculations of Appendix 9. Beneath the vapor band are three windows cut from the main shell for vapor passage.


Due to limitations in Compress software heat exchanger mode, this set of calculations models only the main heat exchanger, not including the vapor band or the window cutouts. The vapor band is modeled as a separate set of Compress calculations, and the vapor windows were modeled by modifying the results of the shell calculations contained herein. This was done by determining the available shell stress as calculated by Compress without the windows, multiplying those calculated stresses by the ratio of remaining shell material after the windows were removed, as prescribed in UHX Section 13.5.10, step 10 for the eight cases of the Operating Condition. Shell stresses were acceptable.

Both sets of calculations, the vapor band and the shell vapor window cut-outs, are modeled and presented under separate cover.

Table of Contents

General Arrangement Drawing	1
Deficiencies Summary	3
Nozzle Schedule	4
Nozzle Summary	5
Pressure Summary	6
Revision History	9
Settings Summary	10
Radiography Summary	12
Thickness Summary	14
Weight Summary	15
Long Seam Summary	16
Hydrostatic Test	18
Vacuum Summary	20
Bill of Materials	21
Baffle Summary Report	23
Data Inputs Summary	24
Design Conditions Summary	25
Materials and Gaskets Summary	26
Tubesheet Maximum Pressure Report	28
Tube Bundle Design	29
Tubes	31
Shell side liquid level	33
Tube side liquid level	34
Front Head	35
Straight Flange on Front Head	38
Front Channel	41
TS Product Intlet (Inlet)	44
TS Product Outlet (Outlet)	55
Tube Side Flange (front)	66
Tubesheet ASME	74
ASME Shell Band (front)	96

Capped Vent Port (P4)	99
SS Condensate Drain (P2)	107
Shell #1	115
Cleanout (P7)	118
Rings #1	127
SS Vent (P5)	130
Sight Glass (P8)	140
Shell #2	151
Press Relief (P3)	154
SS Vapor Inlet (P1)	162
ASME Shell Band (rear)	176
Capped Vent Port (P6)	179
Tube Side Flange (rear)	187
Rear Channel	195
Straight Flange on Rear Channel Head	198
Rear Channel Head	201
Saddle #1	204

1/214

No deficiencies found.

Nozzle Schedule

	Specifications															
Nozzle mark	Identifier	Size	Service		Materials		Normalized	Fine Grain	Flange	Blind						
<u>Inlet</u>	TS Product Intlet	NPS 8 Sch 10S	N	Nozzle	SA-790 Smls pipe S32205	No	No	No	NPS 8 Class 150 SO A182 F51	No						
<u>Outlet</u>	TS Product Outlet	NPS 8 Sch 10S	OUT	Nozzle	SA-790 Smls pipe S32205	No	No	No	NPS 8 Class 150 WN A182 F51	No						
<u>P1</u>	SS Vapor Inlet	NPS 10 Sch 10S	N	Nozzle	SA-312 TP304 Wld pipe	No	No	No	N/A	No						
			Р							Pad	SA-240 304L	No	No	No		
<u>P2</u>	SS Condensate Drain	NPS 2.5 Sch 40S (Std)	DRN	Nozzle	SA-312 TP304L Wld pipe	No	No	No	NPS 2 1/2 Class 150 SO A105	No						
<u>P3</u>	Press Relief	NPS 0.75 Class 3000 - Threaded Half Coupling	PRV	Nozzle	SA-312 TP304 Wld pipe	No	No	No	N/A	No						
<u>P4</u>	Capped Vent Port	NPS 0.5 Class 3000 - Threaded Half Coupling	VENT	Nozzle	SA-312 TP304 Wld pipe	No	No	No	N/A	No						
<u>P5</u>	SS Vent	NPS 0.25 Class 3000 - Threaded Half Coupling		Nozzle	SA-312 TP304 Wld pipe	No	No	No	N/A	No						
<u>P6</u>	Capped Vent Port	NPS 0.5 Class 3000 - Threaded Half Coupling	DRN	Nozzle	SA-312 TP304 Wld pipe	No	No	No	N/A	No						
<u>P7</u>	Cleanout	NPS 2 Sch 10S	CLEANOUT	Nozzle	SA-312 TP304 Wld & smls pipe	No	No	No	NPS 2 Class 150 SO A105	No						
<u>P8</u>	Sight Glass	7.5 OD x 1.75	SG	Nozzle	SA-240 304	No	No	No	N/A	No						

Nozzle Summary

	Dimensions											
Nozzle	OD	t _n	Req t _n	A1?	A ₂ ?		Shell		Reinfor Pa	cement ad	Corr	A _a /A _r
mark	(in)	(in)	(in)	A1 f	A ₂ :	Nom t (in)	Design t (in)	User t (in)	Width (in)	t _{pad} (in)	(in)	(%)
<u>Inlet</u>	8.625	0.148	0.148	Yes	Yes	0.25	0.1761		N/A	N/A	0	100.0
<u>Outlet</u>	8.625	0.148	0.148	Yes	Yes	0.25	0.1779		N/A	N/A	0	100.0
<u>P1</u>	10.75	0.165	0.1454	Yes	Yes	0.1874	0.1697		1.7829	0.1672	0	100.0
<u>P2</u>	2.875	0.203	0.203	Yes	Yes	0.1874	N/A		N/A	N/A	0	Exempt
<u>P3</u>	1.38	0.16	0.0714	Yes	Yes	0.1874	N/A		N/A	N/A	0	Exempt
<u>P4</u>	1.12	0.14	0.0714	Yes	Yes	0.1874	N/A		N/A	N/A	0	Exempt
<u>P5</u>	0.75	0.11	0.0714	Yes	Yes	0.1874	N/A		N/A	N/A	0	Exempt
<u>P6</u>	1.12	0.14	0.0714	Yes	Yes	0.1874	N/A		N/A	N/A	0	Exempt
<u>P7</u>	2.375	0.109	0.1089	Yes	Yes	0.1874	N/A		N/A	N/A	0	Exempt
<u>P8</u>	7.5	1.75	0.1874	Yes	Yes	0.1874	0.1874		N/A	N/A	0	215.0

	Definitions								
t _n	Nozzle thickness								
Req t _n	Req tn Nozzle thickness required per UG-45/UG-16 Increased for pipe to account for 12.5% pipe thickness tolerance								
Nom t	mt Vessel wall thickness								
Design t	Required vessel wall thickness due to pressure + corrosion allowance per UG-37								
User t	Local vessel wall thickness (near opening)								
A _a	Area available per UG-37, governing condition								
A _r	Area required per UG-37, governing condition								
Corr	Corrosion allowance on nozzle wall								

Pressure Summary

Component Summary for Tube side chamber									
Identifier	P Design (psi)	T Design (°F)	MAWP (psi)	MAP (psi)	MAEP (psi)	T _e external (°F)	MDMT (°F)	MDMT Exemption	Impact Tested
Front Head	60	250	98.18	101.16	46.65	250	-20	Note 1	No
Straight Flange on Front Head	60	250	134.74	138.27	23.18	250	-20	Note 2	No
Front Channel	60	250	222.08	226.91	129.6	250	-20	Note 3	No
Tubesheet (see Maximum Pressure Rating note)	75	300	114.91	157.11	204.96	300	-20	Note 4	Yes
Rear Tubesheet (see Maximum Pressure Rating note)	75	300	114.91	157.11	204.96	300	-20	Note 4	Yes
Rear Channel	60	250	222.08	226.91	161.55	250	-20	Note 4	Yes
Straight Flange on Rear Channel Head	60	250	269.98	275.54	161.55	250	-20	Note 6	No
Rear Channel Head	60	250	98.18	101.16	46.65	250	-20	Note 5	No
Tubes	75	300	1,303.18	1,351.45	492.02	300	-20	Note 7	No
Tube Side Flange (front)	60	250	86.65	89.46	150	250	-20	Note 8	Yes
Tube Side Flange (rear)	60	250	86.65	89.46	150	250	-20	Note 8	Yes
TS Product Intlet (Inlet)	60	250	164.57	168.56	53.69	250	40	Note 9	No
TS Product Outlet (Outlet)	60	250	166.08	168.56	55.17	250	40	Note 10	No

Chamber Summary for Tube side chamber					
Design MDMT	40 °F				
Rated MDMT	40 °F @ 86.65 psi				
MAWP hot & corroded	86.65 psi @ 250 °F				
MAP cold & new	89.46 psi @ 70 °F				
MAEP	23.18 psi @ 250 °F				

Component Summary for Shell side chamber										
ldentifier	P Design (psi)	T Design (°F)	MAWP (psi)	MAP (psi)	MAEP (psi)	T _e external (°F)	MDMT (°F)	MDMT Exemption		Impact Tested
Tubesheet (see Maximum Pressure Rating note)	40	300	204.96	226.15	114.91	300	-20	No	te 4	Yes
ASME Shell Band (front)	25	300	118.31	125.38	16.36	300	-320	Not	e 11	No
<u>Shell #1</u>	25	300	118.31	125.38	16.36	300	-320	Not	e 11	No
Shell #2	25	300	118.31	125.38	20.53	300	-320	Not	e 11	No
ASME Shell Band (rear)	25	300	118.31	125.38	20.53	300	-320	Not	e 11	No
Rear Tubesheet (see Maximum Pressure Rating note)	40	300	204.96	226.15	114.91	300	-20	No	te 4	Yes
Tubes	40	300	492.02	492.02	1,303.18	300	N/A	N/A		No
Rings #1	N/A	N/A	N/A	N/A	16.36	300	N/A	N/A		No
Saddle #1	25	300	86.35	N/A	N/A	N/A	N/A	N/A		N/A
SS Vapor Inlet (P1)	25	300	115.1	120.38	15.74	300	-320	Nozzle Pad	Note 12 Note 11	No No
SS Condensate Drain (P2)	25	300	169.08	179.12	16.36	300	-55	Not	e 13	No
Press Relief (P3)	25	300	169.26	179.12	20.53	300	-320	Not	e 14	No
Capped Vent Port (P4)	25	300	169.26	179.12	16.36	300	-320	Not	e 15	No
SS Vent (P5)	25	300	169.26	179.12	16.36	300	-320	Note 16		No
Capped Vent Port (P6)	25	300	169.08	179.12	20.53	300	-320	Note 15		No
Cleanout (P7)	25	300	86.35	91.37	16.36	300	-55	Note 17		No
Sight Glass (P8)	25	300	169.26	179.12	16.36	300	-55	Not	e 18	No

Chamber Summary for Shell side chamber					
Design MDMT	40 °F				
Rated MDMT	-20 °F @ 86.35 psi				
MAWP hot & corroded	86.35 psi @ 300 °F				
MAP cold & new	91.37 psi @ 70 °F				
MAEP	15.74 psi @ 300 °F				

Notes for Maximum Pressure Rating								
Note #	Details							
1.	The largest tubesheet MAWP/MAP values have been selected from the multiple design conditions to maximize the hydrotest pressure and to comply with UG-20(b). The MAWP/MAP selected for the shell side may not be coincident with the MAWP/MAP selected for the tube side (and vice versa).							
2.	The chamber MAWP listed above is based on the largest tubesheet MAWP values from the multiple design conditions. The lowest tubesheet MAWP values should be considered when determining the final chamber MAWP. Refer to the <u>Tubesheet Maximum Pressure Report</u> for the lowest tubesheet maximum pressure ratings.							

	Notes for MDMT Rating	
Note #	Exemption	Details
1.	Straight Flange governs MDMT	
2.	Rated MDMT per UHA-51(d)(3)(a) = -20°F	
3.	Impact test exempt per UHA-51(g) (coincident ratio = 0.3094)	
4.	Material is impact tested to -20°F per UHA-51(a).	
5.	Straight Flange governs MDMT	
6.	Impact test exempt per UHA-51(g) (coincident ratio = 0.2706)	
7.	Impact test exempt per UHA-51(g) (coincident ratio = 0.0666)	
8.	Flange Material is impact tested to -20°F per UHA-51(a).	Bolts rated MDMT per Fig UCS-66 note (c) = -55°F
9.	Flange rating governs: Flange rated MDMT per UHA-51(g) = 40°F (Coincident ratio = 0.3047) Bolts rated MDMT per Fig UCS-66 note (c) = -55°F	
10.	Flange rating governs: Flange rated MDMT per UHA-51(g) = 40°F (Coincident ratio = 0.2988) Bolts rated MDMT per Fig UCS-66 note (c) = -55°F	
11.	Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0.10%) = -320°F	
12.	Impact test exempt per UHA-51(g) (coincident ratio = 0.1839)	
13.	Flange rating governs: Flange rated MDMT per UCS-66(b)(3) = -155°F (Coincident ratio = 0.3039) Bolts rated MDMT per Fig UCS-66 note (c) = -55°F	
14.	Impact test exempt per UHA-51(g) (coincident ratio = 0.0193)	
15.	Impact test exempt per UHA-51(g) (coincident ratio = 0.0175)	
16.	Impact test exempt per UHA-51(g) (coincident ratio = 0.014)	
17.	Flange rating governs: Flange rated MDMT per UCS-66(b)(3) = -155°F (Coincident ratio = 0.303) Bolts rated MDMT per Fig UCS-66 note (c) = -55°F	
18.	Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0.10%) = -320°F	Bolts rated MDMT per Fig UCS-66 note (c) = $-55^{\circ}F$

Revision History

	Revisions									
No.	Date	Operator	Notes							
0	1/22/2020	jeffh	New vessel created Heat Exchanger. [COMPRESS 2018 Build 7800]							
1	2/13/2020	jeffh	Converted from ASME Section VIII Division 1, 2017 Edition to ASME Section VIII Division 1, 2019 Edition. During the conversion, changes may have been made to your vessel (some may be listed above). Please check your vessel carefully.							

Settings Summary

COMPRESS 2020 Build 8000	
ASME Section VIII Division 1, 2019 E	dition
Units	U.S. Customary
Datum Line Location	0.00" from right seam
Vessel Design Mode	Design Mode
Minimum thickness	0.0625" per UG-16(b)
Design for cold shut down only	No
Design for lethal service (full radiography required)	No
Design nozzles for	Design P only
Corrosion weight loss	100% of theoretical loss
UG-23 Stress Increase	1.20
Skirt/legs stress increase	1.0
Minimum nozzle projection	2"
Juncture calculations for α > 30 only	Yes
Preheat P-No 1 Materials > 1.25" and <= 1.50" thick	No
UG-37(a) shell tr calculation considers longitudinal stress	No
Cylindrical shells made from pipe are entered as minimum thickness	No
Nozzles made from pipe are entered as minimum thickness	No
ASME B16.9 fittings are entered as minimum thickness	No
Butt welds	Tapered per Figure UCS-66.3(a)
Disallow Appendix 1-5, 1-8 calculations under 15 psi	No
Hydro/Pneumatic Test	
Shop Hydrotest Pressure	1.3 times vessel MAWP [UG-99(b)]
Test liquid specific gravity for Tube side chamber	1.00
Test liquid specific gravity for Shell side chamber	1.00
Maximum stress during test	90% of yield
Required Marking - UG-116	
Tube Side	
UG-116(e) Radiography	None
UG-116(f) Postweld heat treatment	None
Shell Side	
UG-116(e) Radiography	None
UG-116(f) Postweld heat treatment	None
Code Cases\Interpretations	
Use Code Case 2547	No
Use Appendix 46	No
Use UG-44(b)	No
Use Code Case 2955	No
Apply interpretation VIII-1-83-66	Yes
Apply interpretation VIII-1-86-175	Yes

Apply interpretation VIII-1-01-150	Yes				
Apply interpretation VIII-1-07-50	Yes				
Apply interpretation VIII-1-16-85	Yes				
No UCS-66.1 MDMT reduction	No				
No UCS-68(c) MDMT reduction	No				
Disallow UG-20(f) exemptions	No				
UG-22 Loadings					
UG-22(a) Internal or External Design Pressure	Yes				
UG-22(b) Weight of the vessel and normal contents under operating or test conditions	Yes				
UG-22(c) Superimposed static reactions from weight of attached equipment (external loads)	No				
UG-22(d)(2) Vessel supports such as lugs, rings, skirts, saddles and legs	Yes				
UG-22(f) Wind reactions	No				
UG-22(f) Seismic reactions	No				
UG-22(j) Test pressure and coincident static head acting during the test:	No				
Note: UG-22(b),(c) and (f) loads only considered when supports are present.					
Note 2: UG-22(d)(1),(e),(f)-snow,(g),(h),(i) are not considered. If these loads are present, additional calculations must be performed.					

License Information

Company Name	Seitz Stainless					
License	Commercial					
License Key ID	23841					
Support Expires	May 24, 2021					

Radiography Summary

UG-116 Radiography - Tube Side Chamber										
	Long	itudinal Seam	Left Circ	cumferential Seam	Right Circ					
Component			Category (Fig UW- 3)	Radiography / Joint Type	Category (Fig UW- 3)	Radiography / Joint Type	Mark			
Front Head	N/A	Seamless No RT	N/A	N/A	В	None UW-11(c) / Type 1	None			
Front Channel	A	None UW-11(c) / Type 1	В	None UW-11(c) / Type 1	С	N/A	None			
Tube Side Flange (front)	N/A	Seamless No RT	С	N/A	N/A	N/A / Gasketed	N/A			
Tubesheet	N/A	Seamless No RT ¹	N/A	N/A / Gasketed	N/A	N/A / Type 7	N/A			
Rear Tubesheet	N/A	Seamless No RT ¹	N/A	N/A / Type 7	N/A	N/A / Gasketed	N/A			
Rear Channel	A	None UW-11(c) / Type 1	С	N/A	В	None UW-11(c) / Type 1	None			
Tube Side Flange (rear)	N/A	Seamless No RT	N/A	N/A / Gasketed	С	N/A	N/A			
Rear Channel Head	N/A	Seamless No RT	В	None UW-11(c) / Type 1	N/A	N/A	None			
Tubes	N/A	Welded tube	N/A	N/A / Type 7	N/A	N/A / Type 7	N/A			
Nozzle	Long	itudinal Seam	Nozzle to Vessel Circumferential Seam		Nozzle free end Circumferential Seam					
TS Product Outlet (Outlet)	N/A	Seamless No RT	D	N/A / Type 7	С	UW-11(a)(4) exempt / Type 1	N/A			
TS Product Intlet (Inlet)	N/A	Seamless No RT	D	N/A / Type 7	С	N/A / Type 4	N/A			
Nozzle Flange	Long	itudinal Seam	F	Flange Face	Noz Circum					
ASME B16.5/16.47 flange attached to TS Product Outlet (Outlet)	N/A	Seamless No RT	N/A	N/A / Gasketed	С	UW-11(a)(4) exempt / Type 1	N/A			
ASME B16.5/16.47 flange attached to TS Product Intlet (Inlet)	N/A	Seamless No RT	N/A	N/A / Gasketed	С	N/A / Type 4	N/A			
¹ Tubesheets are always considered to be seam	less.									
Interpretation VIII-1 01-150 has been applied.										
		UG-116(e) Required	Marking: No	ne						

	UG-	116 Radiography - S	Shell Side C	hamber			
	Long	itudinal Seam	Left Circ	cumferential Seam	Right Circ		
Component			Category (Fig UW- 3) Radiography / Joint Type		Category (Fig UW- 3) Radiography / Joint Type		Mark
Tubesheet	N/A	Seamless No RT ¹	N/A	N/A / Gasketed	N/A	N/A / Type 7	N/A
ASME Shell Band (front)	A	None UW-11(c) / Type 1	N/A	N/A / Type 7	В	None UW-11(c) / Type 1	None
Shell #1	A	None UW-11(c) / Type 1	В	None UW-11(c) / Type 1	В	None UW-11(c) / Type 1	None
Shell #2	A	None UW-11(c) / Type 1	В	None UW-11(c) / Type 1	В	None UW-11(c) / Type 1	None
ASME Shell Band (rear)	A	None UW-11(c) / Type 1	В	None UW-11(c) / Type 1	N/A	N/A / Type 7	None
Rear Tubesheet	N/A	Seamless No RT ¹	N/A N/A / Type 7		N/A	N/A / Gasketed	N/A
Nozzle	Longitudinal Seam		Nozzle to Vessel Circumferential Seam		Noz Circum		
SS Condensate Drain (P2)	N/A	Welded pipe	D	N/A / Type 7	С	N/A / Type 4	N/A
Capped Vent Port (P4)	N/A	Welded pipe	D	N/A / Type 7	N/A	N/A	N/A
SS Vent (P5)	N/A	Welded pipe	D	N/A / Type 7	N/A	N/A	N/A
Sight Glass (P8)	N/A	Seamless No RT	D	N/A / Type 7	N/A	N/A	N/A
Cleanout (P7)	N/A	Welded pipe	D	N/A / Type 7	С	N/A / Type 4	N/A
SS Vapor Inlet (P1)	N/A	Welded pipe	D	N/A / Type 7	N/A	N/A	N/A
Press Relief (P3)	N/A	Welded pipe	D	N/A / Type 7	N/A	N/A	N/A
Capped Vent Port (P6)	N/A	Welded pipe	D	N/A / Type 7	N/A	N/A	N/A
Nozzle Flange	Long	itudinal Seam	Flange Face		Nozzle to Flange Circumferential Seam		
ASME B16.5/16.47 flange attached to SS Condensate Drain (P2)	N/A	Seamless No RT	N/A	N/A / Gasketed	С	N/A / Type 4	N/A
ASME B16.5/16.47 flange attached to Cleanout (P7)	N/A	Seamless No RT	N/A	N/A / Gasketed	С	N/A / Type 4	N/A
¹ Tubesheets are always considered to be seam	less.		,	· · · · ·			
Interpretation VIII-1 01-150 has been applied.							
		UG-116(e) Required I	Marking: No	ne			

Thickness Summary

Component Data											
Component Identifier	Material	Diameter (in)	Length (in)	Nominal t (in)	Design t (in)	Total Corrosion (in)	Joint E	Load			
Front Head	SA-240 S32205	41.5 ID	7.2636	0.218*	0.1345	0	0.85	Internal			
Straight Flange on Front Head	SA-240 S32205	41.5 ID	0.5	0.125	0.1062	0	0.85	External			
Front Channel	SA-240 S32205	41.5 ID	18	0.25	0.1066	0	0.70	External			
Tubesheet	SA-240 S32205	47 OD	1.25	1.25	0.8706	0	1.00	Unknown			
<u>Tubes</u>	SA-789 Wld tube S32205	1.5 OD	144	0.049	0.0189	0	1.00	External			
ASME Shell Band (front)	SA-240 304	41.625 ID	12	0.1874	0.1811	0	0.70	External			
Shell #1	SA-240 304	41.625 ID	96	0.1874	0.1811	0	0.70	External			
Shell #2	SA-240 304	41.625 ID	21.5	0.1874	0.1667	0	0.70	External			
ASME Shell Band (rear)	SA-240 304	41.625 ID	12	0.1874	0.1667	0	0.70	External			
Rear Tubesheet	SA-240 S32205	47 OD	1.25	1.25	0.8706	0	1.00	Unknown			
Rear Channel	SA-240 S32205	41.5 ID	6	0.25	0.0772	0	0.70	External			
Straight Flange on Rear Channel Head	SA-240 S32205	41.5 ID	0.5	0.25	0.0772	0	0.85	External			
Rear Channel Head	SA-240 S32205	41.5 ID	7.2636	0.218*	0.1345	0	0.85	Internal			
*Head minimum thickness after forming											

Definitions									
Nominal t	Vessel wall nominal thickness								
Design t	t Required vessel thickness due to governing loading + corrosion								
Joint E	Longitudinal seam joint efficiency								
	Load								
Internal	Circumferential stress due to internal pressure governs								
External	External pressure governs								
Wind	Combined longitudinal stress of pressure + weight + wind governs								
Seismic	Combined longitudinal stress of pressure + weight + seismic governs								

Weight Summary

	Weight (Ib) Contributed by Vessel Elements										
Component	Metal	Metal	Insulation	Insulation		Piping	Operating Liquid		Test Liquid		Surface Area
Component	New*	Corroded	moulation	Supports		New	Corroded	New	Corroded	ft ²	
Front Head	102.4	102.4	0	0	0	0	234.2	234.2	234.2	234.2	12
Front Channel	158.2	158.2	0	0	0	0	978.4	978.4	983.3	983.3	16
<u>Tubesheet</u>	394.5	394.5	0	0	0	0	0	0	0	0	1
ASME Shell Band (front)	85.3	85.3	0	0	0	0	21.4	21.4	328	328	11
Shell #1	682.7	682.7	0	0	0	0	168.7	168.7	2,622	2,622	88
Shell #2	148.5	148.5	0	0	0	0	49	49	606.1	606.1	19
<u>Tubes</u>	3,102.1	3,102.1	0	0	0	0	2,742.2	2,742.2	2,744.4	2,744.4	N/A
ASME Shell Band (rear)	85.6	85.6	0	0	0	0	21.1	21.1	327.7	327.7	11
Rear Tubesheet	394.5	394.5	0	0	0	0	0	0	0	0	1
Rear Channel	55.5	55.5	0	0	0	0	381.2	381.2	381.5	381.5	5
Rear Channel Head	104.7	104.7	0	0	0	0	234.2	234.2	234.2	234.2	12
Saddle #1	294	294	0	0	0	0	0	0	0	0	40
TOTAL:	5,607.9	5,607.9	0	0	0	0	4,830.4	4,830.4	8,461.4	8,461.4	217
*Shells with attached noz	zles have	e weight redu	uced by mate	rial cut out fo	or openin	g.					

	Weight (Ib) Contributed by Attachments										
Component	Body Flanges			Nozzles & Flanges		Trays Baffles	Tray Supports	Rings & Clips	Vertical Loads	Surface Area ft ²	
	New	Corroded	New	Corroded	Beds	Pass Partitions	Cupports	Chp3	Loaus	n.	
Front Head	0	0	0	0	0	0	0	0	0	0	
Front Channel	188.7	188.7	79.6	79.6	0	0	0	0	0	6	
<u>Tubesheet</u>	0	0	0	0	0	0	0	0	0	0	
ASME Shell Band (front)	0	0	8.2	8.2	0	0	0	0	0	0	
Shell #1	0	0	19.6	19.6	0	27.6¹	0	38	0	6	
Shell #2	0	0	14.8	14.8	0	27.6¹	0	0	0	1	
ASME Shell Band (rear)	0	0	0.1	0.1	0	0	0	0	0	0	
Rear Tubesheet	0	0	0	0	0	0	0	0	0	0	
Rear Channel	188.7	188.7	0	0	0	0	0	0	0	2	
Rear Channel Head	0	0	0	0	0	0	0	0	0	0	
TOTAL:	377.3	377.3	122.4	122.4	0	55.2	0	38	0	15	
¹ Baffle weights are appro	oximate	d.									

Vessel Totals								
	New	Corroded						
Operating Weight (Ib)	11,031	11,031						
Empty Weight (lb)	6,201	6,201						
Test Weight (lb)	14,662	14,662						
Surface Area (ft ²)	233	-						
Shell side capacity** (US gal)	463	463						
Tube side capacity** (US gal)	547	547						
**The shell and tube capacity does not include volume of nozzle, piping or other attachments.								

Vessel Lift Condition						
Vessel Lift Weight, New (lb)	6,201					
Center of Gravity from Datum (in)	82.0916					

Shell Long Seam Angles					
Component	Seam 1				
Front Channel	270°				
ASME Shell Band (front)	87°				
Shell #1	224°				
Shell #2	292°				
ASME Shell Band (rear)	112°				
Rear Channel	292°				

Shell Plate Lengths						
Component	Starting Angle	Plate 1				
Front Channel	270°	131.1615"				
ASME Shell Band (front)	87°	131.3575"				
<u>Shell #1</u>	224°	131.3575"				
Shell #2	292°	131.3575"				
ASME Shell Band (rear)	112°	131.3575"				
Rear Channel	292°	131.1615"				

Note

1) Plate Lengths use the circumference of the vessel based on the mid diameter of the components.

	· r		
₽ð		8	P\$
	۲		
8			
망	C		

Shell Rollout

Hydrostatic Test

Horizontal shop hydrostatic test based on MAWP per UG-99(b) for Tube side chamber

Gauge pressure at 70°F $= 1.3 \cdot MAWP \cdot LSR$ $= 1.3 \cdot 86.65 \cdot 1.015$

= 114.33 psi

Horizontal shop hydrostatic test							
Identifier	Local test pressure (psi)	Test liquid static head (psi)	UG-99(b) stress ratio	UG-99(b) pressure factor			
Front Head (1)	116.059	1.728	1.015	1.30			
Straight Flange on Front Head	116.059	1.728	1.015	1.30			
Front Channel	116.059	1.728	1.015	1.30			
Rear Channel	116.059	1.728	1.015	1.30			
Straight Flange on Rear Channel Head	116.059	1.728	1.015	1.30			
Rear Channel Head	116.059	1.728	1.015	1.30			
Fubes	116.036	1.706	1.0359	1.30			
Fube Side Flange (front)	116.059	1.728	1.015	1.30			
Fubesheet	116.059	1.728	1.0344	1.30			
Rear Tubesheet	116.059	1.728	1.0344	1.30			
Fube Side Flange (rear)	116.059	1.728	1.015	1.30			
rS Product Intlet (Inlet)	116.289	1.958	1.015	1.30			
rS Product Outlet (Outlet)	114.552	0.221	1.015	1.30			

The field test condition has not been investigated for the Tube side chamber.

Horizontal shop hydrostatic test based on MAWP per UG-99(b) for Shell side chamber

Gauge pressure at 70°F $= 1.3 \cdot MAWP \cdot LSR$ $= 1.3 \cdot 86.35 \cdot 1$

= 112.25 psi

Horizontal shop hydrostatic test							
ldentifier	Local test pressure (psi)	Test liquid static head (psi)	UG-99(b) stress ratio	UG-99(b) pressure factor			
ASME Shell Band (front)	113.871	1.618	1.0582	1.30			
Shell #1	113.871	1.618	1.0582	1.30			
Shell #2	113.871	1.618	1.0582	1.30			
ASME Shell Band (rear)	113.871	1.618	1.0582	1.30			
Tubes	113.846	1.593	N/A	1.30			
Tubesheet	113.871	1.618	1.0344	1.30			
Rear Tubesheet	113.871	1.618	1.0344	1.30			
Capped Vent Port (P4)	112.362	0.108	1.0559	1.30			
Capped Vent Port (P6)	113.896	1.642	1.0559	1.30			
Cleanout (P7)	112.362	0.108	1.0582	1.30			
Press Relief (P3)	112.362	0.108	1.0559	1.30			
SS Condensate Drain (P2) (1)	113.95	1.697	1	1.30			
SS Vapor Inlet (P1)	113.947	1.693	1	1.30			
SS Vent (P5)	113.129	0.876	1.0559	1.30			
Sight Glass (P8)	113.192	0.939	1.0582	1.30			

(1) SS Condensate Drain (P2) limits the UG-99(b) stress ratio.
(2) The zero degree angular position is assumed to be up, and the test liquid height is assumed to the top-most flange.

The field test condition has not been investigated for the Shell side chamber.

Vacuum Summary

Largest Unsupported Length Le							
Component	Line of Support	Elevation above Datum (in)	Length Le (in)				
Front Head	-	179.5136	N/A				
-	1/3 depth of Front Head	174.5985	N/A				
Straight Flange on Front Head Left	-	172.25	22.5985				
Straight Flange on Front Head Right	-	171.75	22.5985				
Front Channel Left	-	171.75	22.5985				
Front Channel Right	-	153.75	22.5985				
-	Tube Side Flange (front)	152	N/A				
Tubesheet	-	151.875	N/A				
ASME Shell Band (front) Left	-	150.625	79.0875				
ASME Shell Band (front) Right	-	138.625	79.0875				
Shell #1 Left	-	138.625	79.0875				
-	Rings #1	72.1625	71.375				
Shell #1 Right	-	42.625	79.0875				
Shell #2 Left	-	42.625	63.6625				
Shell #2 Right	-	21.125	63.6625				
ASME Shell Band (rear) Left	-	21.125	63.6625				
ASME Shell Band (rear) Right	-	9.125	63.6625				
Rear Tubesheet	-	7.875	N/A				
-	Tube Side Flange (rear)	7.75	N/A				
Rear Channel Left	-	6	10.5985				
Rear Channel Right	-	0	10.5985				
Straight Flange on Rear Channel Head Left	-	0	10.5985				
Straight Flange on Rear Channel Head Right	-	-0.5	10.5985				
-	1/3 depth of Rear Channel Head	-2.8485	N/A				
Rear Channel Head	-	-7.7636	N/A				
For Rings, the listed value of length Le is Ls p	per UG-29.						

Bill of Materials

	Heads / Tubesheets						
Item #	Туре	Material	Thk [in]	Dia. [in]	Wt. [lb] (ea.)	Qty	
H1	F&D Head	SA-240 S32205	0.218 (min.)	41.5 ID	102.4	1	
H2	F&D Head	SA-240 S32205	0.218 (min.)	41.5 ID	104.7	1	
H3	Tubesheet	SA-240 S32205 (Impact (-20 °F))	1.25	47 OD	394.5	2	

	Shells / Tubes						
Item #	Туре	Material	Thk [in]	Dia. [in]	Length [in]	Wt. [lb] (ea.)	Qty
S1	Cylinder	SA-240 S32205	0.25	41.5 ID	18	166.4	1
S2	Cylinder	SA-240 304	0.1874	41.625 ID	12	85.7	2
S3	Cylinder	SA-240 304	0.1874	41.625 ID	96	685.3	1
S4	Cylinder	SA-240 304	0.1874	41.625 ID	21.5	153.5	1
S5	Cylinder	SA-240 S32205 (Impact (-20 °F))	0.25	41.5 ID	6	55.5	1
Tube1	Tube	SA-789 Wld tube S32205	0.049	1.5	144	9.1	342

	Rings						
I	Item #	Туре	Material	Thk [in]	Length [in]	Wt. [lb]	Qty
	R1	3/8x2.5 Flat Bar	SA-479 304L Bar (low stress)	0.375	139.8	38	1

	Nozzles						
Item #	Туре	Material	NPS	Thk [in]	Dia. [in]	Length [in]	Wt. [lb]
Noz1	Nozzle	SA-790 Smls pipe S32205	NPS 8 Sch 10S	0.148	8.625 OD	9.5	10.6
Noz2	Nozzle	SA-312 TP304L Wld pipe	NPS 2.5 Sch 40S (Std)	0.203	2.875 OD	2.3	1.1
Noz3	Nozzle	SA-312 TP304 Wld & smls pipe	NPS 2 Sch 10S	0.109	2.375 OD	3.1	0.7
Noz4	Nozzle	SA-312 TP304 Wld pipe	NPS 10 Sch 10S	0.165	10.75 OD	7.1	14.7

Nozzles - Couplings								
Item #	Туре	Material	Dia. [in]	Length [in]	Qty			
C1	NPS 0.5 Class 3000 - Threaded Half Coupling	SA-312 TP304 Wld pipe	1.12 OD	0.94	2			
C2	NPS 0.25 Class 3000 - Threaded Half Coupling	SA-312 TP304 Wld pipe	0.75 OD	0.69	1			
СЗ	NPS 0.75 Class 3000 - Threaded Half Coupling	SA-312 TP304 Wld pipe	1.38 OD	1	1			

	Nozzles - Studding Outlets							
Item #	Туре	Material	# Bolts	Thk [in]	Dia. [in]	Wt. [lb]	Qty	
SP1	Studding Outlet Custom Size - Contoured Base	SA-240 304	4	1.19	7.5 OD x 4 ID	13.9	1	

Flanges										
Item #	Туре	Material	NPS	Dia. [in]	Wt. [lb] (ea.)	Qty				
AF1	ASME B16.5 Welding Neck - Class 150	A182 F51	8	13.5 x 7.98	39	1				
AF2	ASME B16.5 Slip On - Class 150	A182 F51	8	13.5 x 8.72	30	1				
AF3	ASME B16.5 Slip On - Class 150	A105	2.5	7 x 2.94	7	1				
AF4	ASME B16.5 Slip On - Class 150	A105	2.0	6 x 2.44	5	1				
CF1	Ring type integral	SA-182 F60 (Impact (-20 °F))	-	47 x 41.5	188.7	2				

Gaskets								
Item #	Туре	Size [in]	Thk [in]	Qty				
G1 Not specified 42.9 x 42.6 0.125 2								
There are 4 flanges that do not include gasket information.								

Fasteners								
ltem #	Description	Length [in]	Qty					
FB1	Studding Outlet Bolts 0.5" dia.	SA-193 B7 Bolt <= 2 1/2	-	4				
FB2	3/4" coarse bolt	SA-193 B7 Bolt <= 2 1/2	3.5	16				
FB3	5/8" coarse bolt	SA-193 B7 Bolt <= 2 1/2	5	56				
FB4	5/8" coarse bolt	SA-193 B7 Bolt <= 2 1/2	3	4				
FB5	5/8" coarse bolt	SA-193 B7 Bolt <= 2 1/2	2.8	4				
SB1	1" series 8 bolt	Saddle bolt material	-	4				
-								

All listed flange bolts require associated nuts and washers in accordance with Division 1, UCS-11.

Plates								
ltem #	Item # Material Thk [in] Wt. [lb] Qty [ft²]							
Plate1	SA-240 304L	0.1672	46.7	1.12				
Plate1 - Note: Applies to nozzle pad								
Plate2	sa240-304	0.25	213.5	21				
Plate2 - Note: Applies to	saddle wear plate, saddle web plate							
Plate3	sa240-304	0.375	80.1	5.24				
Plate3 - Note: Applies to saddle base plate								
Plate4	SA-240	0.25	55.2	5.42				
Plate4 - Note: Applies to baffle plates								

Notes						
Note #	Note					
1.	Tubesheet attachements including Tie Rods, Skid Bars, Seal Bars, and Dummy Tubes, are not included in the Bill of Materials.					

Baffle Summary Report

Baffle Data	
Material	SA-240
Туре	Single Segmental
Orientation	Vertical
Shell Clearance	0.125 in (0.25 in TEMA (Max))
Thickness	0.25 in (0.25 in TEMA)
Diameter	41.5 in
Count	2
Maximum Tubesheet to Baffle Distance	122 in
Maximum Baffle to Baffle Distance	0 in
Distance between Tubesheet Shell Side Faces	141.5 in
Group Weight	55.2 lb
Material Density (Assumed)	0.283 lb/in ³
Tube Hole Diameter	1.5156 in

Baffle Specifications									
Baffle Name	Distance from Front Tubesheet (in)	Cut Direction	Cut Distance from Center (in)	Baffle Weight (lb) ¹					
Baffle #1	37.375	Right	1	27.6					
Baffle #2	122	Left	1	27.6					
¹ Baffle weight is approximated.									

Data Inputs Summary

General Options								
Identifier		Heat Exchanger						
Codes	ASME VIII-1, 2019 Edition		ASME only design					
	Fixed tubesheets -		One pass shell	-				
Description	Expansion joint not used		Tubesheets of differing thickness method not used	Perform ASME tube design check				
Tube supports\baffle plates	Maximum tubesheet to tube support dista 122 in	ince:	Maximum tube support separation: 0 in	Baffles support all tubes: No				

Tube Options							
Tube material	SA-789 Wld tube S32205						
Length between outer tubesheet faces: \mathbf{L}_{t}	t 144 in						
Tube dimensions, new, in	d _o = 1.5 t _t = 0.049 (0.0429 min) Inner corrosion: 0 Outer corrosio			Outer corrosion: 0			
Tube to tubesheet joint option	Table A-2 Type e, Welded, a ≥1.4*t, and expanded						

	Channel and Shell Options									
Shell dimensions new, in	SA-240 304	D _i = 41.625	t _s = 0.1874	Inner corrosion: 0	Outer corrosion: 0	MDMT: -20 °F				
	Type: bonnet	Torispher	rical head	Inner corrosion: 0	Outer corrosion: 0	MDMT: 40 °F				
Front channel dimensions, new, in	Cylinder	SA-240 S32205		D _i = 41.5	t _c = 0.25	L= 18				
	Closure	SA-240 S32205		D _i = 41.5	t _{min} = 0.218	L _{SF} = 0.5				
	Type: bonnet	Torispher	rical head	Inner corrosion: 0	Outer corrosion: 0	MDMT: 40 °F				
Rear channel dimensions, new, in	Cylinder	SA-240 S32205		D _i = 41.5	t _c = 0.25	L= 6				
	Closure	SA-240 S32205		D _i = 41.5	t _{min} = 0.218	L _{SF} = 0.5				

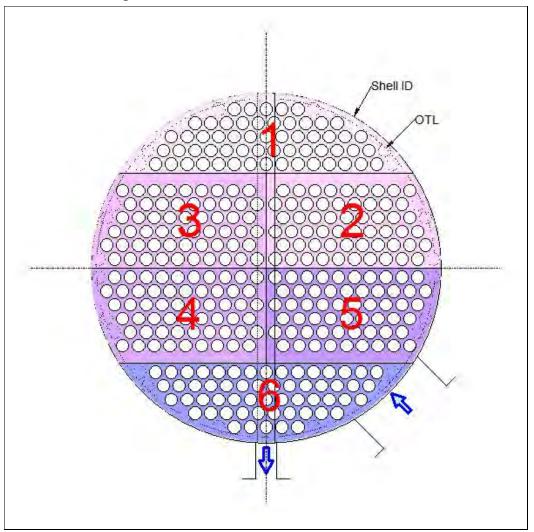
Tubesheet Options									
Tube Layout	Tube Layout Tube hole: 342 - 1.514 in (Special Close Fit)					Pattern: 60° (rotated triangular)			
Tubesheet dimensions, in	Material: SA-240 S32205	T = 1.25	OD = 47	Shell side corrosion = 0Tube side corrosion 		MDMT = 40 °F	Tubesheet pass groove depth = 0		
(front and rear)		Not produced fine grain practice	PWHT not performed		Integral shell side	Gasketed tube side			

Design Conditions Summary

Design Conditions									
	Description	Operating	Tube side hydrotest	Shell side hydrotest	Operating - Shell Side External Pressure	Operating - Tube Side External Pressure			
	Design Pressure (psi)	60	114.33	0	60	-15			
	Internal Operating Pressure (psi)	60	N/A	N/A	60	0			
Tube Side	External Design Pressure (psi)	15	N/A	N/A	0	0			
	External Operating Pressure (psi)	15	N/A	N/A	0	0			
	Tubesheet Static Pressure (psi)	1.49	1.73	0	1.49	0			
	Design temperature (°F)	250	70	70	250	250			
	Design Pressure (psi)	25	0	112.25	-15	25			
	Internal Operating Pressure (psi)	25	N/A	N/A	0	25			
Shell Side	External Design Pressure (psi)	15	N/A	N/A	0	0			
	External Operating Pressure (psi)	15	N/A	N/A	0	0			
	Tubesheet Static Pressure (psi)	0	0	1.62	0	0			
	Design temperature (°F)	300	70	70	300	300			
	Design temperature (°F)	300	70	70	300	300			
	Mean temperature (°F)	250	70	70	250	250			
	α _T (in/in/°F)	7.30E-06	7.00E-06	7.00E-06	7.30E-06	7.30E-06			
Tubes	E _t (psi)	27.85E+06	29E+06	29E+06	27.85E+06	27.85E+06			
	S _t (psi)	26,235 [*]	63,000*	63,000*	26,235 [*]	26,235 [*]			
	S _y (psi)	57,900	70,000	70,000	57,900	57,900			
	Mean temperature (°F)	250	70	70	250	250			
	α _s (in/in/°F)	9.10E-06	8.50E-06	8.50E-06	9.10E-06	9.10E-06			
Shell	E _s (psi)	27.25E+06	28.3E+06	28.3E+06	27.25E+06	27.25E+06			
	S _s (psi)	18,900	27,000	27,000	18,900	18,900			
Tubesheet	Design temperature (°F)	300	70	70	300	300			
Tubesneet	S (psi)	26,200	58,500	58,500	26,200	26,200			

* The allowable tensile stress from Section II-D has been divided by 0.85 as the calculated stresses are longitudinal.

Materials and Gaskets Summary


Materials And Gaskets				
Part	Quantity	Size	Material	Gasket
Front torispherical head	1	41.50 ID x 0.218 in min thk	SA-240 S32205	-
Front channel cylinder	1	41.50 ID x 0.25 thk x 18.00 in	SA-240 S32205	-
Tube Side Flange (front)	1	47.00 OD x 1.75 in thk	SA-182 F60	
Front tubesheet	1	47.00 OD x 1.25 in thk	SA-240 S32205	42.90 OD x 42.60 ID x 0.13 in thk
Front Tubesheet flange bolts	28	0.625 in dia. stud x 5.00 in long	SA-193 B7	-
Tubes	342	1.50 OD x 0.049 nom wall (0.0429 min) x 144.00 in	SA-789 Wld tube S32205	-
Front shell band cylinder	1	41.63 ID x 0.1874 in thk x 12.00 in	SA-240 304	-
Shell cylinder course	1	41.63 ID x 0.1874 in thk x 21.50 in	SA-240 304	-
Shell cylinder course	1	41.63 ID x 0.1874 in thk x 96.00 in	SA-240 304	-
Rear shell band cylinder	1	41.63 ID x 0.1874 in thk x 12.00 in	SA-240 304	-
Rear tubesheet	1	47.00 OD x 1.25 in thk	SA-240 S32205	
Tube Side Flange (rear)	1	47.00 OD x 1.75 in thk	SA-182 F60	42.90 OD x 42.60 ID x 0.13 in thk
Rear Tubesheet flange bolts	28	0.625 in dia. stud x 5.00 in long	SA-193 B7	-
Rear channel cylinder	1	41.50 ID x 0.25 thk x 6.00 in	SA-240 S32205	-
Rear torispherical head	1	41.50 ID x 0.218 in min thk	SA-240 S32205	-

Nozzle Materials And Gaskets				
Part	Quantity	Size	Material	Gasket
TS Product Outlet (Outlet)	1	8 in 150# WN	A182 F51	
	1	NPS 8 Sch 10S	SA-790 Smls pipe S32205	-
Bolts for TS Product Outlet (Outlet)	8	0.75 in dia. bolt x 3.5 in long	SA-193 B7	
TS Product Intlet (Inlet)	1	8 in 150# SO	A182 F51	
	1	NPS 8 Sch 10S	SA-790 Smls pipe S32205	-
Bolts for TS Product Intlet (Inlet)	8	0.75 in dia. bolt x 3.5 in long	SA-193 B7	
SS Condensate Drain (P2)	1	2.5 in 150# SO	A105	
	1	NPS 2.5 Sch 40S (Std)	SA-312 TP304L WId pipe	-
Bolts for SS Condensate Drain (P2)	4	0.625 in dia. bolt x 3 in long	SA-193 B7	
Capped Vent Port (P4)	1	NPS 0.5 Class 3000 - Threaded Half Coupling	SA-312 TP304 Wld pipe	-
SS Vent (P5)	1	NPS 0.25 Class 3000 - Threaded Half Coupling	SA-312 TP304 Wld pipe	-
Sight Glass (P8)	1	Studding Outlet Custom Size -	SA-240 304	-
Cleanout (P7)	1	2 in 150# SO	A105	
	1	NPS 2 Sch 10S	SA-312 TP304 Wld & smls pipe	-
Bolts for Cleanout (P7)	4	0.625 in dia. bolt x 2.75 in long	SA-193 B7	
SS Vapor Inlet (P1)	1	NPS 10 Sch 10S	SA-312 TP304 Wld pipe	
	1	10.75 ID x 1.78 wide x 0.1672 in thk pad	SA-240 304L	
Press Relief (P3)	1	NPS 0.75 Class 3000 - Threaded Half Coupling	SA-312 TP304 Wld pipe	-
Capped Vent Port (P6)	1	NPS 0.5 Class 3000 - Threaded Half Coupling	SA-312 TP304 Wld pipe	-

Tubesheet Maximum	Pressure	Report
--------------------------	----------	--------

ASME Tubesheet Maximum Pressure Ratings						
Description Operating			Tube side MAP	Shell side MAP	Operating - Shell Side External Pressure	Operating - Tube Side External Pressure
	Pressure (psi)	114.91	157.11	0	93.43	-152.2
Tube Side	Tubesheet Static Pressure (psi)	1.49	0	0	1.49	0
	Design temperature (°F)	250	70	70	250	250
	Pressure (psi)	204.96	0	226.15	-45.35	117.63
Shell Side	Tubesheet Static Pressure (psi)	0	0	0	0	0
	Design temperature (°F)	300	70	70	300	300
Tubes	Design temperature (°F)	300	70	70	300	300
Tubes	Mean temperature (°F)	250	70	70	250	250
Shell	Mean temperature (°F)	250	70	70	250	250
Tubesheet	Design temperature (°F)	300	70	70	300	300

Tube Bundle Design

	Tube Layout	
	Horizontal mixed or H-banded	\frown
Layout	First pass: top	
Tube OD	1.5"	
Pitch	1.875"	
Pattern	Rotated Triangular (60°)	
	X = 1.875"	
Pattern Dimensions	Y = 3.2476"	

Outer Tube Limit			
Shell ID 41.625"			
Design OTL	40.25"		
Actual OTL	40.2436" (+0.0064")		

	Tubes Per Pass - 342 Tubes Total				
Pass #	Tube Count	Mean Tube Count	% Deviation from Mean		
1	57	57	0.00%		
2	57	57	0.00%		
3	57	57	0.00%		
4	57	57	0.00%		
5	57	57	0.00%		
6	57	57	0.00%		

Shell and Tube Areas			
Total Shell Area	1,360.8128 in ²		
Each Tube Area	1.7671 in ²		
Total Tubes	342		
Total Tubes Area	604.3639 in ²		
	Total Shell Area - Total Tubes Area - Total Tie Rods Area - Total Dummy Tubes Area		
Net Free Area	1,360.81 - 604.36 - 0.00 - 0.00		
	756.4489 in ²		

Baffle Window Areas			
Baffle Cut	47.6% of Shell ID		
Baffle Cut Distance from Center	1"		
Baffle Window Area	638.7974 in ²		
Number of Tubes in Baffle Window	left = 164, right = 164		
Baffle Window Tubes Area	left = 289.8119 in ² , right = 289.8119 in ²		
Baffle Free Area	Window Area - Tubes Area		
	left = 348.9855 in^2 , right = 348.9855 in^2		
% of Net Free Area	Baffle Free Area / Net Free Area		
	left = 46.13%, right = 46.13%		

Tubes

ASME Section VIII Division 1, 2019 Edition					
Component		Tube			
Material		SA-789 W	'ld tube S32205 (II-D	p. 128, ln. 46)	
Impact Tested	Normalized	Fine Grain Practice			
No	No	No	Ν	ło	
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)	
Int	ernal	75	300	40	
Ext	ternal	40	300	40	
		Static Liquio	d Head		
Con	dition	P _s (psi)	H _s (in)	SG	
Оре	erating	1.47	40.6218	1	
Operating, Ext		0.15	4.1218	1	
Test h	orizontal	1.71	47.2468	1	
		Dimensio	ons		
Outer	Diameter		1.5"		
Le	ngth	144"			
Tube Nomi	nal Thickness	0.049"			
Tube Minimu	um Thickness ¹	0.0429"			
Corrosion	Inner	0"			
CONTOSION	Outer		0"		
Weight and Capacity					
Weight (Ib) Capa			Capacity (US gal)		
N	lew	9.07		0.96	
Cor	roded	9.07 0.96		0.96	

¹Tube minimum thickness = nominal thickness times tube tolerance factor of 0.875.

Results Summary			
Governing condition	External pressure		
Minimum thickness per UG-16	Exempt per UG-16(b)(2)		
Design thickness due to internal pressure (t)	<u>0.0026"</u>		
Design thickness due to external pressure (t_e)	<u>0.0189"</u>		
Maximum allowable working pressure (MAWP)	<u>1,303.18 psi</u>		
Maximum allowable pressure (MAP)	<u>1,351.45 psi</u>		
Maximum allowable external pressure (MAEP)	<u>492.02 psi</u>		
Rated MDMT	-20 °F		

UHA-51 Material Toughness Requirements			
$t_r = rac{88.11 \cdot 0.75}{23,\!100 \cdot 1 + 0.4 \cdot 88.11} =$	0.0029"		
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0029 \cdot 1}{0.0429 - 0} =$	0.0666		
Impact test exempt per UHA-51(g) (coincident ratio = 0.0666)			
Rated MDMT =	-20°F		
Material is exempt from impact testing at the Design MDMT of 40°F.			

Design thickness, (at 300 °F) Appendix 1-1

$$t = \frac{P \cdot R_o}{S \cdot E + 0.40 \cdot P} + \text{Corrosion} = \frac{76.47 \cdot 0.75}{22,300 \cdot 1.00 + 0.40 \cdot 76.47} + 0 = \underline{0.0026}"$$

Maximum allowable working pressure, (at 300 °F) Appendix 1-1

$$P = \frac{S \cdot E \cdot t}{R_o - 0.40 \cdot t} - P_s = \frac{22,300 \cdot 1.00 \cdot (0.049 \cdot 0.875)}{0.75 - 0.40 \cdot (0.049 \cdot 0.875)} - 1.47 = \underline{1.303.18} \text{ psi}$$

Maximum allowable pressure, (at 70 °F) Appendix 1-1

 $P = S \cdot E \cdot \frac{t}{R_o - 0.40 \cdot t} = 23,100 \cdot 1.00 \cdot \frac{0.049 \cdot 0.875}{0.75 - 0.40 \cdot (0.049 \cdot 0.875)} = \underline{1,351.45} \text{ psi}$

External Pressure, (Corroded & at 300 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{144}{1.5} = 50.0000$$
$$\frac{D_o}{t} = \frac{1.5}{0.0189} = 79.3210$$

From table G: A = 0.000177From table HA-5: $B = 2{,}388{,}507$ psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 2,388.51}{3 \cdot (1.5/0.0189)} = 40.15 \text{ psi}$$

Design thickness for external pressure $P_a = 40.15$ psi

 $t_a = t + \text{Corrosion} = 0.0189 + 0 = 0.0189$ "

Maximum Allowable External Pressure, (Corroded & at 300 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{144}{1.5} = 50.0000$$
$$\frac{D_o}{t} = \frac{1.5}{0.049 \cdot 0.875} = 34.9854$$

From table G: A = 0.000955From table HA-5: B = 12,914.0049 psi

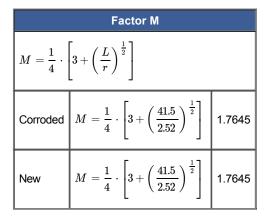
$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} - Pse = \frac{4 \cdot 12,914}{3 \cdot (1.5/(0.049 \cdot 0.875))} - 0.15 = \underline{492.02} \text{ psi}$$

Shell side liquid level

ASME Section VIII Division 1, 2019 Edition	
Location from Center Line (in)	-16
Operating Liquid Specific Gravity	1
HX Condition	Include in tubesheet calculation
Operating	No

Tube side liquid level

ASME Section VIII Division 1, 2019 Edition		
Location from Center Line (in) 20.5		
Operating Liquid Specific Gravity 1		
HX Condition Include in tubesheet calculation		
Operating	erating Yes	


Front Head

Component	-		n	
Component	F&D Head			
Material	SA-240 S32205 (II-D p. 128, In. 35)			
Attached To		Front Channel		
Impact Tested Normalized	Fine Grain Practice	РѠҤТ	Maximize MDMT/ No MAWP	
No No	No	No	No	
	Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)	
Internal	60	250	40	
External	15	250	10	
	Static Liq	uid Head		
Condition	P _s (psi)	H _s (in)	SG	
Operating	1.49	41.25	1	
Test horizontal	1.73	47.875	1	
Dimensions				
Inner Diameter		41.5"		
Crown Radius L	41.5"			
Knuckle Radius r		2.52"		
Minimum Thickness		0.218"		
Corrosion Inner		0"		
Outer		0"		
Length L _{sf}		0.5"		
Nominal Thickness t _{sf}		0.125"		
Weight and Capacity				
	Weight (Ib) ¹ Capacity (US gal) ¹			
New	102.38		28.09	
Corroded	102.38 28.09		28.09	
	Radiog	raphy		
Category A joints	Seamless No RT			
Head to shell seam	None UW-11(c) Type 1			

¹ includes straight flange

Results Summary		
Governing condition	internal pressure	
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"	
Design thickness due to internal pressure (t)	<u>0.1345</u> "	
Design thickness due to external pressure (t_e)	<u>0.1237</u> "	
Maximum allowable working pressure (MAWP)	<u>98.18</u> psi	
Maximum allowable pressure (MAP)	<u>101.16</u> psi	
Maximum allowable external pressure (MAEP)	<u>46.65</u> psi	
Straight Flange governs MDMT	-20°F	

Note: Endnote 90 used to determine allowable stress.

Design thickness for internal pressure, (Corroded at 250 °F) Appendix 1-4(d)

$$t = \frac{P \cdot L \cdot M}{2 \cdot S \cdot E - 0.2 \cdot P} + \text{Corrosion} = \frac{61.49 \cdot 41.5 \cdot 1.7645}{2 \cdot 19,704.8 \cdot 0.85 - 0.2 \cdot 61.49} + 0 = \underline{0.1345}"$$

Maximum allowable working pressure, (Corroded at 250 °F) Appendix 1-4(d)

$$P = \frac{2 \cdot S \cdot E \cdot t}{L \cdot M + 0.2 \cdot t} - P_s = \frac{2 \cdot 19,704.8 \cdot 0.85 \cdot 0.218}{41.5 \cdot 1.7645 + 0.2 \cdot 0.218} - 1.49 = \underline{98.18} \text{ psi}$$

Maximum allowable pressure, (New at 70 °F) Appendix 1-4(d)

$$P = \frac{2 \cdot S \cdot E \cdot t}{L \cdot M + 0.2 \cdot t} - P_s = \frac{2 \cdot 20,000 \cdot 0.85 \cdot 0.218}{41.5 \cdot 1.7645 + 0.2 \cdot 0.218} - 0 = \underline{101.16} \text{ psi}$$

Design thickness for external pressure, (Corroded at 250 °F) UG-33(e)

Equivalent outside spherical radius (R_0) = Outside crown radius = 41.718 in

$$A = \frac{0.125}{R_o \ / \ t} = \frac{0.125}{41.718 \ / \ 0.123616} = 0.00037$$

From Table HA-5:B = 5,062.2058 psi

$$P_a = \frac{B}{R_o \ / \ t} = \frac{5,062.2058}{41.718 \ / \ 0.1236} = 15 \text{ psi}$$

Check the external pressure per UG-33(a)(1) Appendix 1-4(d)

$$t = \frac{1.67 \cdot P_e \cdot L \cdot M}{2 \cdot S \cdot E - 0.2 \cdot 1.67 \cdot P_e} + \text{Corrosion} = \frac{1.67 \cdot 15 \cdot 41.5 \cdot 1.7645}{2 \cdot 19,704.8 \cdot 1 - 0.2 \cdot 1.67 \cdot 15} + 0 = 0.0466"$$

The head external pressure design thickness (t_e) is <u>0.1236</u>".

Maximum Allowable External Pressure, (Corroded at 250 °F) UG-33(e)

Equivalent outside spherical radius (R_0) = Outside crown radius = 41.718 in

$$A = rac{0.125}{R_o \ / \ t} = rac{0.125}{41.718 \ / \ 0.218} = 0.000653$$

From Table HA-5:B = 8,926.5947 psi

$$P_a = {B \over R_o \ / \ t} = {8,926.5947 \over 41.718 \ / \ 0.218} = 46.6465 ~{
m psi}$$

Check the Maximum External Pressure, UG-33(a)(1) Appendix 1-4(d)

$$P = \frac{2 \cdot S \cdot E \cdot t}{(L \cdot M + 0.2 \cdot t) \cdot 1.67} = \frac{2 \cdot 19,704.8 \cdot 1 \cdot 0.218}{(41.5 \cdot 1.7645 + 0.2 \cdot 0.218) \cdot 1.67} = 70.21 \text{ psi}$$

The maximum allowable external pressure (MAEP) is <u>46.65</u> psi.

% Forming strain - UHA-44(a)(2)

$$EFE = \left(\frac{75 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{75 \cdot 0.125}{2.5825}\right) \cdot \left(1 - \frac{2.5825}{\infty}\right) = 3.6302\%$$

Straight Flange on Front Head

ASME Section VIII Division 1, 2019 Edition						
Com	ponent	Cylinder				
Ма	terial	SA-240 S32205 (II-D p. 128, In. 35)				
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP		
No	No	No	No	No		
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)		
Int	ernal	60	250	40		
Ext	ternal	15	250			
		Static Liquid	Head			
Cor	dition	P _s (psi)	H _s (in)	SG		
Operating 1.49 41.2		41.25	1			
Test h	orizontal	1.73 47.875 1		1		
		Dimensio	ns			
Inner I	Diameter		41.5"			
Le	ngth		0.5"			
Nominal	Thickness		0.125"			
Corrosion	Inner		0"			
	Outer		0"			
		Weight and C	apacity			
		Weight (Ib) Capacity (US ga		Capacity (US gal)		
N	lew	2.3 2.93		2.3		2.93
Cor	roded	2.3 2.93		2.93		
		Radiograp	ohy			
Longitu	dinal seam	Seamless No RT				
Right Circun	nferential seam	None UW-11(c) Type 1				

Results Summary		
Governing condition	External pressure	
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"	
Design thickness due to internal pressure (t)	<u>0.0564"</u>	
Design thickness due to external pressure (t_e)	<u>0.1062"</u>	
Maximum allowable working pressure (MAWP)	<u>134.74 psi</u>	
Maximum allowable pressure (MAP)	<u>138.27 psi</u>	
Maximum allowable external pressure (MAEP)	<u>23.18 psi</u>	
Rated MDMT	-20 °F	

UHA-51 Material Toughness Requirements		
$\boxed{t_r = \frac{88.14 \cdot 20.75}{27,\!100 \cdot 0.85 - 0.6 \cdot 88.14}} =$	0.0796"	
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0796 \cdot 0.85}{0.125 - 0} =$	0.5411	
Rated MDMT per UHA-51(d)(3)(a) = -20°F		
Material is exempt from impact testing at the Design MDMT of 40°F.		

Design thickness, (at 250 °F) UG-27(c)(1)

 $t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{61.49 \cdot 20.75}{26,700 \cdot 0.85 - 0.60 \cdot 61.49} + 0 = \underline{0.0564}"$

Maximum allowable working pressure, (at 250 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{26,700 \cdot 0.85 \cdot 0.125}{20.75 + 0.60 \cdot 0.125} - 1.49 = \underline{134.74} \text{ psi}$$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{27,100 \cdot 0.85 \cdot 0.125}{20.75 + 0.60 \cdot 0.125} = \underline{138.27} \text{ psi}$$

External Pressure, (Corroded & at 250 °F) UG-28(c)

 $\frac{L}{D_o} = \frac{22.5985}{41.75} = 0.5413$ $\frac{D_o}{t} = \frac{41.75}{0.1062} = 393.2098$

From table G: A = 0.000324From table HA-5: B = 4,423.6091 psi

 $P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 4,423.61}{3 \cdot (41.75/0.1062)} = 15 \ \, \mathrm{psi}$

Design thickness for external pressure $P_a = 15$ psi

 $t_a = t + \text{Corrosion} = 0.1062 + 0 = 0.1062$ "

Maximum Allowable External Pressure, (Corroded & at 250 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{22.5985}{41.75} = 0.5413$$
$$\frac{D_o}{t} = \frac{41.75}{0.125} = 334.0000$$

From table G: A = 0.000425From table HA-5: B = 5,807.1058 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 5,807.11}{3 \cdot (41.75/0.125)} = rac{23.18}{23.18} \, \mathrm{psi}$$

% Forming strain - UHA-44(a)(2)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 0.125}{20.8125}\right) \cdot \left(1 - \frac{20.8125}{\infty}\right) = 0.3003\%$$

Allowable Compressive Stress, Hot and Corroded- S_{cHC}, (table HA-5)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{20.875/0.125} = 0.000749$$
$$B = 10,229 \text{ psi}$$
$$26.700$$

$$S = \frac{1}{1.00} = 26,700$$
 psi

 $S_{c\!H\!C}~=~\min~(B,S)=$ 10,229 psi

Allowable Compressive Stress, Hot and New- $\rm S_{CHN}$

 $S_cHN=S_cHC=10{,}229\,$ psi

Allowable Compressive Stress, Cold and New- S_{cCN}, (table HA-5)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{20.875/0.125} = 0.000749$$
$$B = 10,614 \text{ psi}$$
$$S = \frac{27,100}{1.00} = 27,100 \text{ psi}$$

 $S_{c\!C\!N}~=~\min~(B,S)=$ 10,614 psi

Allowable Compressive Stress, Cold and Corroded- \mathbf{S}_{cCC}

 $S_{c\mathbb{C}} = S_{cCN} = 10{,}614$ psi

Allowable Compressive Stress, Vacuum and Corroded- S_{cVC}, (table HA-5)

$$A = rac{0.125}{R_o/t} = rac{0.125}{20.875/0.125} = 0.000749$$

 $B = 10,229 ~
m psi$
26.700

$$S = \frac{26,700}{1.00} = 26,700$$
 psi

 $S_{c\!V\!C}\ =\ \min\ (B,S\,)=$ 10,229 psi

Front Channel

ASME Section VIII Division 1, 2019 Edition						
Com	ponent	Cylinder				
Material		SA-240 S32205 (II-D p. 128, In. 35)				
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP		
No	No	No	No	No		
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)		
Int	ernal	60	250	40		
Ext	ternal	15	250	10		
		Static Liqui	d Head			
Cor	dition	P _s (psi)	H _s (in)	SG		
Operating		1.49	41.25	1		
Test h	orizontal	1.73 47.875 1		1		
	Dimensions					
Inner I	Diameter	41.5"				
Le	ngth		18"			
Nominal	Thickness		0.25"			
Corrosion	Inner		0"			
	Outer		0"			
		Weight and C	apacity			
		Weight (Ib) Capacity (US ga		Capacity (US gal)		
N	lew	158.21 105.4		158.21		105.4
Cor	roded	158.21 105.4		105.4		
	Radiography					
Longitue	dinal seam	None UW-11(c) Type 1				
Left Circum	ferential seam	n None UW-11(c) Type 1				

Results Summary		
Governing condition	External pressure	
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"	
Design thickness due to internal pressure (t)	<u>0.0685"</u>	
Design thickness due to external pressure (t_e)	<u>0.1066"</u>	
Maximum allowable working pressure (MAWP)	<u>222.08 psi</u>	
Maximum allowable pressure (MAP)	<u>226.91 psi</u>	
Maximum allowable external pressure (MAEP)	<u>129.6 psi</u>	
Rated MDMT	-20 °F	

UHA-51 Material Toughness Requirements		
$t_r = \frac{88.14 \cdot 20.75}{27,100 \cdot 0.7 - 0.6 \cdot 88.14} =$	0.0967"	
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0967 \cdot 0.8}{0.25 - 0} =$	0.3094	
Impact test exempt per UHA-51(g) (coincident ratio = 0.3094)		
Rated MDMT =	-20°F	
Material is exempt from impact testing at the Design MDMT of 40°F.		

Design thickness, (at 250 °F) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{61.49 \cdot 20.75}{26,700 \cdot 0.70 - 0.60 \cdot 61.49} + 0 = \underline{0.0685}"$$

Maximum allowable working pressure, (at 250 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{26,700 \cdot 0.70 \cdot 0.25}{20.75 + 0.60 \cdot 0.25} - 1.49 = \underline{222.08} \text{ psi}$$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{27,100 \cdot 0.70 \cdot 0.25}{20.75 + 0.60 \cdot 0.25} = \underline{226.91} \text{ psi}$

External Pressure, (Corroded & at 250 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{22.5985}{42} = 0.5381$$
$$\frac{D_o}{t} = \frac{42}{0.1066} = 394.0112$$

From table G: A = 0.000324From table HA-5: B = 4,432.6614 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 4,432.66}{3 \cdot (42/0.1066)} = 15 \text{ psi}$$

Design thickness for external pressure P_a = 15 psi

 $t_a = t + \text{Corrosion} = 0.1066 + 0 = 0.1066$ "

Maximum Allowable External Pressure, (Corroded & at 250 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{22.5985}{42} = 0.5381$$
$$\frac{D_o}{t} = \frac{42}{0.25} = 168.0000$$

From table G: A = 0.001225From table HA-5: B = 16,330.1718 psi

 $P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 16,330.17}{3 \cdot (42/0.25)} = rac{129.6}{129.6} \ {
m psi}$

% Forming strain - UHA-44(a)(2)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 0.25}{20.875}\right) \cdot \left(1 - \frac{20.875}{\infty}\right) = 0.5988\%$$

Allowable Compressive Stress, Hot and Corroded- S_{cHC}, (table HA-5)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{21/0.25} = 0.001488$$
$$B = 17,241 \text{ psi}$$
$$S = \frac{26,700}{1.00} = 26,700 \text{ psi}$$

 $S_{c\!H\!C}\ =\ \min\ (B,S) =$ 17,241 psi

Allowable Compressive Stress, Hot and New- $\mathsf{S}_{\mathsf{CHN}}$

 $S_cHN=S_cHC$ = 17,241 psi

Allowable Compressive Stress, Cold and New- $\rm S_{\rm cCN},$ (table HA-5)

$$\begin{split} A &= \frac{0.125}{R_o/t} = \frac{0.125}{21/0.25} = 0.001488\\ B &= 19,232 \quad \text{psi}\\ S &= \frac{27,100}{1.00} = 27,100 \quad \text{psi}\\ S_{dCN} &= \min \left(B,S\right) = 19,232 \text{ psi} \end{split}$$

Allowable Compressive Stress, Cold and Corroded- $\mathsf{S}_{\mathsf{cCC}}$

$$S_{c\mathbb{C}}~=S_{cCN}~=19{,}232~{
m psi}$$

Allowable Compressive Stress, Vacuum and Corroded- $S_{\text{cVC}},$ (table HA-5)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{21/0.25} = 0.001488$$

$$B = 17,241 \text{ psi}$$

$$S = \frac{26,700}{1.00} = 26,700 \text{ psi}$$

$$S_{cVC} = \min(B,S) = 17,241 \text{ psi}$$

TS Product Intlet (Inlet)

ASME Section VIII Division 1, 2019 Edition		
	0.25 0.25 0.25 0.25 0.25	
Note: round inside edges per UG-76(c)		
Location and Orie	entation	
Located on	Front Channel	
Orientation	180°	
Nozzle center line offset to datum line	164.75"	
End of nozzle to shell center	27.125"	
Passes through a Category A joint	No	
Nozzle		
Service	Inlet (IN)	
Description	NPS 8 Sch 10S	
Access opening	No	
Material specification	SA-790 Smls pipe S32205 (II-D p. 128, In. 38)	
Inside diameter, new	8.329"	
Pipe nominal wall thickness	0.148"	
Pipe minimum wall thickness ¹	0.1295"	
Corrosion allowance	0"	
Projection available outside vessel, Lpr	5.977"	
Projection available outside vessel to flange face, Lf	6.125"	
Local vessel minimum thickness	0.25"	
Local vessel minimum thickness Liquid static head included	0.25" 1.5 psi	
Liquid static head included Longitudinal joint efficiency		
Liquid static head included Longitudinal joint efficiency Welds	1.5 psi	
Liquid static head included Longitudinal joint efficiency	1.5 psi	

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2013 Flange			
Description	NPS 8 Class 150 SO A182 F51		
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 398, In. 32)		
Blind included	No		
Rated MDMT	40°F		
Liquid static head	1.72 psi		
MAWP rating	245 psi @ 250°F		
MAP rating	290 psi @ 70°F		
Hydrotest rating	450 psi @ 70°F		
External fillet weld leg (UW-21)	0.2072" (0.2072" min)		
Internal fillet weld leg (UW-21) 0.148" (0.148" min)			
PWHT performed	No		
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	No		
Impact Tested	No		
UW-21 Flange Welds			
$X_{\min} = \min \left[1.4 \cdot t_n, g_0 ight] = \left[1.4 \cdot 0.148, 0.485 ight] =$	0.2072"		
${ m External Leg}_{ m min} = X_{ m min} + rac{C_o}{0.7} = 0.2072 + rac{0}{0.7} =$	0.2072"		
$\boxed{ \text{Internal Leg}_{\min} = \min \left[t_n, 0.25" + \frac{C_i}{0.7} \right] = \min \left[0.148, 0.25 + \frac{0}{0.7} \right] = }$	0.148"		
Notes			
Flange rated MDMT per UHA-51(g) = 40°F (Coincident ratio = 0.3047) Bolts rated MDMT per Fig UCS-66 note (c) = -55°F			

UHA-51 Material Toughness Requirements Nozzle		
$t_r = \frac{88.14 \cdot 4.1645}{27,100 \cdot 1 - 0.6 \cdot 88.14} =$	0.0136"	
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0136 \cdot 1}{0.1295 - 0} =$	0.1048	
Impact test exempt per UHA-51(g) (coincident ratio = 0.1048)		
Rated MDMT =	-20°F	
Material is exempt from impact testing at the Design MDMT of 40°F.		

Reinforcement Calculations for MAWP

The thickness requirements of UG-45 govern the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)					UG-45 Sur	nmary (in)		
1	For P = 166.07 psi @ 250 °F The opening is adequately reinforced					The nozzle p	asses UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
<u>1.0789</u>	<u>1.1336</u>	<u>1.0033</u>	<u>0.0903</u>			<u>0.04</u>	<u>0.1295</u>	0.1295

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(1)

UW-16 Weld Sizing Summary					
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status		
Nozzle to shell fillet (Leg ₄₁)	<u>0.1036</u>	0.14	weld size is adequate		

Calculations for internal pressure 166.07 psi @ 250 °F

Parallel Limit of reinforcement per UG-40

 $L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[8.329, 4.1645 + (0.148 0) + (0.25 0) \right]$
- = 8.329 in

Outer Normal Limit of reinforcement per UG-40

- $L_{H} = \min \left[2.5 \cdot (t C), 2.5 \cdot (t_n C_n) + t_e \right]$
 - $= \min \left[2.5 \cdot (0.25 0), 2.5 \cdot (0.148 0) + 0 \right]$
 - = 0.37 in

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$

=
$$\frac{166.0666 \cdot 4.1645}{26,700 \cdot 1 - 0.6 \cdot 166.0666}$$

=
$$0.026 \text{ in}$$

Required thickness t_r from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

=
$$\frac{166.0666 \cdot 20.75}{26,700 \cdot 1 - 0.6 \cdot 166.0666}$$

= 0.1295 in

Required thickness t_r per Interpretation VIII-1-07-50

$$= \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{166.0666 \cdot 20.75}{26,700 \cdot 0.7 - 0.6 \cdot 166.0666}$$

= 0.1854 in

tr

Area required per UG-37(c)

Allowable stresses: S_n = 26,700, S_v = 26,700 psi

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

$$A = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$$

= 8.329 \cdot 0.1295 \cdot 1 + 2 \cdot 0.148 \cdot 0.1295 \cdot 1 \cdot (1 - 1)
= 1.0789 in²

Area available from FIG. UG-37.1

 A_1 = larger of the following = <u>1.0033</u> in²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= 8.329 \cdot (1 \cdot 0.25 1 \cdot 0.1295) 2 \cdot 0.148 \cdot (1 \cdot 0.25 1 \cdot 0.1295) \cdot (1 1)$
- = 1.0033 in²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= 2 \cdot (0.25 + 0.148) \cdot (1 \cdot 0.25 1 \cdot 0.1295) 2 \cdot 0.148 \cdot (1 \cdot 0.25 1 \cdot 0.1295) \cdot (1 1)$
- = 0.0959 in²

 A_2 = smaller of the following= <u>0.0903</u> in²

$$= 5 \cdot (t_n - t_{rn}) \cdot f_{r2} \cdot t$$

- $= 5 \cdot (0.148 0.026) \cdot 1 \cdot 0.25$
- = 0.1525 in²
- = $5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t_n$
- $= 5 \cdot (0.148 0.026) \cdot 1 \cdot 0.148$
- = 0.0903 in²

 $A_{41} = Leg^2 \cdot f_{r2}$

- = 0.2² · 1
- = <u>0.04</u> in²

 $Area = A_1 + A_2 + A_{41}$

- = 1.0033 + 0.0903 + 0.04
- = <u>1.1336</u> in²

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P\cdot R_n}{S_n\cdot E - 0.6\cdot P} + \text{Corrosion}$
	=	$\frac{166.2877\cdot 4.1645}{26,700\cdot 1-0.6\cdot 166.2877}+0$
	=	0.026 in
t_a	=	$\max\left[t_{a\mathrm{UG-27}},t_{a\mathrm{UG-22}}\right]$
	=	$\max \ [0.026, 0]$
	=	0.026 in
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{166.0666\cdot 20.75}{26,700\cdot 1-0.6\cdot 166.0666}+0$
	=	0.1295 in
t_{b1}	= =	$0.1295~~{ m in}$ ${ m max}~[t_{b1},t_{b{ m UG16}}]$
t_{b1}		
t_{b1}	=	$\max\left[t_{b1},t_{b\mathrm{UG16}}\right]$
t_{b1}	=	$\max \left[t_{b1}, t_{b\mathrm{UG16}} ight] \ \max \left[0.1295, 0.0625 ight]$
	=	$\max[t_{b1}, t_{bUG16}]$ $\max[0.1295, 0.0625]$ 0.1295 in
	= = =	$\begin{array}{l} \max \left[t_{b1}, t_{b\mathrm{UG16}} \right] \\ \max \left[0.1295, 0.0625 \right] \\ 0.1295 \mathrm{in} \\ \min \left[t_{b3}, t_{b1} \right] \\ \min \left[0.2818, 0.1295 \right] \end{array}$
	= = =	$\max [t_{b1}, t_{bUG16}]$ max [0.1295, 0.0625] 0.1295 in min [t_{b3}, t_{b1}] min [0.2818, 0.1295] 0.1295 in
t_b	=	$\begin{array}{l} \max \left[t_{b1}, t_{b\rm UG16} \right] \\ \max \left[0.1295, 0.0625 \right] \\ 0.1295 {\rm in} \\ \min \left[t_{b3}, t_{b1} \right] \\ \min \left[0.2818, 0.1295 \right] \\ 0.1295 {\rm in} \end{array}$

Available nozzle wall thickness new, t_{n} = $0.875 \cdot 0.148$ = 0.1295 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAP

The thickness requirements of UG-45 govern the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)					UG-45 Sur	nmary (in)		
1	For P = 168.56 psi @ 70 °F The opening is adequately reinforced					The nozzle p	asses UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
<u>1.079</u>	<u>1.1335</u>	<u>1.0032</u>	<u>0.0903</u>			<u>0.04</u>	<u>0.1295</u>	0.1295

UG-41 Weld Failure Path Analysis Summary The nozzle is exempt from weld strength calculations per UW-15(b)(1)

Calculations for internal pressure 168.56 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

 $L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[8.329, 4.1645 + (0.148 0) + (0.25 0) \right]$
- = 8.329 in

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- = min $[2.5 \cdot (0.25 0), 2.5 \cdot (0.148 0) + 0]$
- = 0.37 in

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$

=
$$\frac{168.5595 \cdot 4.1645}{27,100 \cdot 1 - 0.6 \cdot 168.5595}$$

=
$$0.026 \text{ in}$$

Required thickness tr from UG-37(a)

 $t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$ = $\frac{168.5595 \cdot 20.75}{27,100 \cdot 1 - 0.6 \cdot 168.5595}$ = 0.1295 in

Required thickness t_r per Interpretation VIII-1-07-50

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

=
$$\frac{168.5595 \cdot 20.75}{27,100 \cdot 0.7 - 0.6 \cdot 168.5595}$$

= 0.1854 in

Area required per UG-37(c)

Allowable stresses: S_n = 27,100, S_v = 27,100 psi

$$f_{r1} = \text{lesser of 1 or } \frac{S_n}{S_v} = 1$$

$$f_{r2} = \text{lesser of 1 or } \frac{S_n}{S_v} = 1$$

$$A = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$$

$$= 8.329 \cdot 0.1296 \cdot 1 + 2 \cdot 0.148 \cdot 0.1296 \cdot 1 \cdot (1 - 1)$$

$$= 1.079 \text{ in}^2$$

Area available from FIG. UG-37.1

 A_1 = larger of the following = 1.0032 in²

- $= \quad d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- = $8.329 \cdot (1 \cdot 0.25 1 \cdot 0.1296) 2 \cdot 0.148 \cdot (1 \cdot 0.25 1 \cdot 0.1296) \cdot (1 1)$
- = 1.0032 in²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r_1})$$

- $= 2 \cdot (0.25 + 0.148) \cdot (1 \cdot 0.25 1 \cdot 0.1296) 2 \cdot 0.148 \cdot (1 \cdot 0.25 1 \cdot 0.1296) \cdot (1 1)$
- = 0.0959 in²

 A_2 = smaller of the following= <u>0.0903</u> in²

- = $5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= 5 \cdot (0.148 0.026) \cdot 1 \cdot 0.25$
- = 0.1525 in²
- = $5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t_n$
- $= 5 \cdot (0.148 0.026) \cdot 1 \cdot 0.148$
- = 0.0903 in²

 $A_{41} = Leg^2 \cdot f_{r2}$

- = $0.2^{2} \cdot 1$
- = <u>0.04</u> in²

 $Area = A_1 + A_2 + A_{41}$

- = 1.0032 + 0.0903 + 0.04
- = <u>1.1335</u> in²

As Area >= A the reinforcement is adequate.

UG-45 Nozzle Neck Thickness Check

$$\begin{array}{lll} t_{a\mathrm{UG-27}} & = & \displaystyle \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \mathrm{Corrosion} \\ \\ & = & \displaystyle \frac{168.5595 \cdot 4.1645}{27,100 \cdot 1 - 0.6 \cdot 168.5595} + 0 \\ \\ & = & \displaystyle 0.026 \ \mathrm{in} \end{array}$$

t_a	=	$\max\left[t_{a\mathrm{UG-27}},t_{a\mathrm{UG-22}}\right]$
	=	$\max [0.026, 0]$
	=	0.026 in
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{168.5595 \cdot 20.75}{27,100 \cdot 1 - 0.6 \cdot 168.5595} + 0$
	=	0.1295 in
t_{b1}	=	$\max\ [t_{b1},t_{b\mathrm{UG16}}]$
	=	$\max\ [0.1295, 0.0625]$
	=	0.1295 in
t_b	=	$\min \ [t_{b3},t_{b1}]$
	=	min $[0.2818, 0.1295]$
	=	0.1295 in
$t_{ m UG-45}$	=	$\max [t_a, t_b]$
	=	$\max [0.026, 0.1295]$
	=	<u>0.1295</u> in

Available nozzle wall thickness new, $t_{\textrm{n}}$ = $0.875 \cdot 0.148$ = 0.1295 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)					UG-45 Sur	nmary (in)		
For Pe = 53.69 psi @ 250 °F The opening is adequately reinforced					The nozzle p	asses UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
<u>0.7335</u>	<u>0.7336</u>	<u>0.6152</u>	<u>0.0784</u>			<u>0.04</u>	<u>0.0625</u>	0.1295

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary					
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status		
Nozzle to shell fillet (Leg ₄₁)	<u>0.1036</u>	0.14	weld size is adequate		

Calculations for external pressure 53.69 psi @ 250 °F

Parallel Limit of reinforcement per UG-40

$$L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$$

- = $\max [8.329, 4.1645 + (0.148 0) + (0.25 0)]$
- = 8.329 in

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min [2.5 · (t - C), 2.5 · (t_n - C_n) + t_e]

- = min $[2.5 \cdot (0.25 0), 2.5 \cdot (0.148 0) + 0]$
- = 0.37 in

Nozzle required thickness per UG-28 t_{rn} = 0.042 in

From UG-37(d)(1) required thickness $t_r = 0.1761$ in

Area required per UG-37(d)(1)

Allowable stresses: S_n = 26,700, S_v = 26,700 psi

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

$$A = 0.5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1}))$$

= 0.5 \cdot (8.329 \cdot 0.1761 \cdot 1 + 2 \cdot 0.148 \cdot 0.1761 \cdot 1 \cdot (1 - 1))
= 0.7335 in²

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>0.6152</u> in²

 $= d \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$

- = $8.329 \cdot (1 \cdot 0.25 1 \cdot 0.1761) 2 \cdot 0.148 \cdot (1 \cdot 0.25 1 \cdot 0.1761) \cdot (1 1)$
- = 0.6152 in²
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1-f_{r1})$
- = $2 \cdot (0.25 + 0.148) \cdot (1 \cdot 0.25 1 \cdot 0.1761) 2 \cdot 0.148 \cdot (1 \cdot 0.25 1 \cdot 0.1761) \cdot (1 1)$
- = 0.0588 in²

 A_2 = smaller of the following= <u>0.0784</u> in²

- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= 5 \cdot (0.148 0.042) \cdot 1 \cdot 0.25$
- = 0.1325 in²
- = $5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t_n$
- $= 5 \cdot (0.148 0.042) \cdot 1 \cdot 0.148$
- = 0.0784 in²

 $A_{41} = Leg^2 \cdot f_{r2}$

- = 0.2² · 1
- = <u>0.04</u> in²

 $Area = A_1 + A_2 + A_{41}$

- = 0.6152 + 0.0784 + 0.04
- = <u>0.7336</u> in²

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [0.75, t_n, t] = 0.148$ in $t_{c(\min)} = \min [0.25, 0.7 \cdot t_{\min}] = 0.1036$ in $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 0.2 = 0.14$ in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-28}}$	=	0.042 in
t_a	=	$\max\ [t_{a\mathrm{UG-28}},t_{a\mathrm{UG-22}}]$
	=	$\max[0.042, 0]$
	=	0.042 in
t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{53.6905\cdot 20.75}{26,700\cdot 1-0.6\cdot 53.6905}+0$
	=	0.0418 in

t_{b2}	= ma	$\mathrm{x}\left[t_{b2},t_{b\mathrm{UG16}} ight]$
----------	------	---

- $= \max[0.0418, 0.0625]$
- = 0.0625 in

 $t_b = \min\left[t_{b3}, t_{b2}
ight]$

= min [0.2818, 0.0625]

= 0.0625 in

 $t_{ ext{UG-45}} = \max\left[t_a, t_b
ight]$

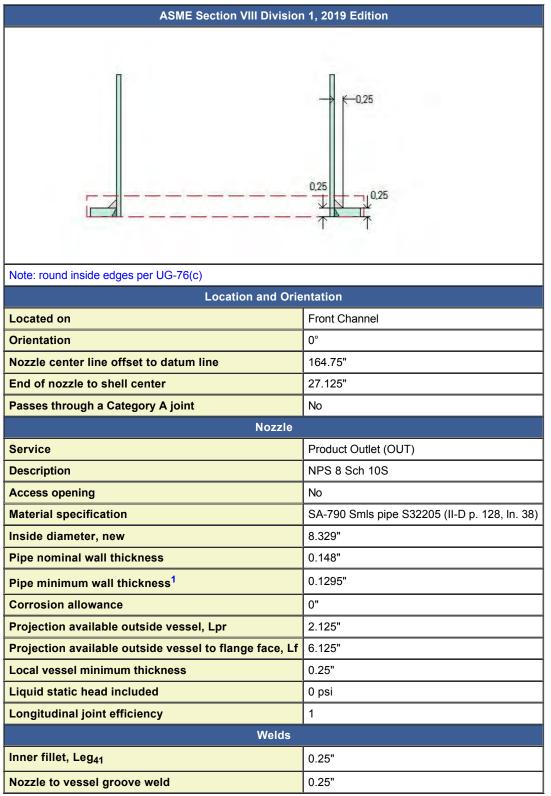
- = max [0.042, 0.0625]
- = <u>0.0625</u> in

Available nozzle wall thickness new, $t_{\textrm{n}}$ = $0.875 \cdot 0.148$ = 0.1295 in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 250 °F) UG-28(c)

 $\frac{L}{D_o} = \frac{6.5726}{8.625} = 0.7620$ $\frac{D_o}{t} = \frac{8.625}{0.042} = 205.2231$


From table G: A = 0.000605From table HA-5: B = 8,264.0127 psi

 $P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 8{,}264.01}{3 \cdot (8{,}625/0.042)} = 53.69 \ \, \mathrm{psi}$

Design thickness for external pressure $P_a = 53.69$ psi

 $t_a = t + \text{Corrosion} = 0.042 + 0 = \textbf{0.042"}$

TS Product Outlet (Outlet)

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16	.5-2013 Flange				
Description	NPS 8 Class 150 WN A182 F51				
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 398, In. 32)				
Blind included	No				
Rated MDMT	40°F				
Liquid static head	0 psi				
MAWP rating	245 psi @ 250°F				
MAP rating	290 psi @ 70°F				
Hydrotest rating	450 psi @ 70°F				
PWHT performed	No				
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	No				
Impact Tested	No				
Circumferential joint radiography	Full UW-11(a) Type 1				
Notes					
Flange rated MDMT per UHA-51(g) = 40° Bolts rated MDMT per Fig UCS-66 note (Flange rated MDMT per UHA-51(g) = 40°F (Coincident ratio = 0.2988) Bolts rated MDMT per Fig UCS-66 note (c) = -55°F				

UHA-51 Material Toughness Requirements Nozzle					
$t_r = rac{86.65 \cdot 4.1645}{27,100 \cdot 1 - 0.6 \cdot 86.65} =$	0.0133"				
Stress ratio $= rac{t_r \cdot E^*}{t_n - c} = rac{0.0133 \cdot 1}{0.1295 - 0} =$	0.103				
Impact test exempt per UHA-51(g) (coincident ratio = 0.103)					
Rated MDMT =	-20°F				
Material is exempt from impact testing at the Design MI	DMT of 40°F.				

Reinforcement Calculations for MAWP

The thickness requirements of UG-45 govern the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)					UG-45 Sur	nmary (in)		
	For P = 166.08 psi @ 250 °F The opening is adequately reinforced					The nozzle p	asses UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
<u>1.079</u>	<u>1.156</u>	<u>1.0032</u>	<u>0.0903</u>			<u>0.0625</u>	<u>0.1295</u>	0.1295

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(1)

UW-16 Weld Sizing Summary					
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status		
Nozzle to shell fillet (Leg ₄₁)	<u>0.1036</u>	0.175	weld size is adequate		

Calculations for internal pressure 166.08 psi @ 250 °F

Parallel Limit of reinforcement per UG-40

 $L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[8.329, 4.1645 + (0.148 0) + (0.25 0) \right]$
- = 8.329 in

Outer Normal Limit of reinforcement per UG-40

- L_{H} = min $[2.5 \cdot (t C), 2.5 \cdot (t_n C_n) + t_e]$
 - $= \min \left[2.5 \cdot (0.25 0), 2.5 \cdot (0.148 0) + 0 \right]$
 - = 0.37 in

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$

= $\frac{166.0759 \cdot 4.1645}{26,700 \cdot 1 - 0.6 \cdot 166.0759}$
= 0.026 in

Required thickness t_r from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

=
$$\frac{166.0759 \cdot 20.75}{26,700 \cdot 1 - 0.6 \cdot 166.0759}$$

= 0.1296 in

Required thickness t_r per Interpretation VIII-1-07-50

$$= \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{166.0759 \cdot 20.75}{26,700 \cdot 0.7 - 0.6 \cdot 166.0759}$$

= 0.1854 in

tr

Area required per UG-37(c)

Allowable stresses: S_n = 26,700, S_v = 26,700 psi

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

$$A = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$$

= 8.329 \cdot 0.1296 \cdot 1 + 2 \cdot 0.148 \cdot 0.1296 \cdot 1 \cdot (1 - 1)
= 1.079 in²

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>1.0032</u> in²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= 8.329 \cdot (1 \cdot 0.25 1 \cdot 0.1296) 2 \cdot 0.148 \cdot (1 \cdot 0.25 1 \cdot 0.1296) \cdot (1 1)$
- = 1.0032 in²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1-f_{r1})$$

- $= 2 \cdot (0.25 + 0.148) \cdot (1 \cdot 0.25 1 \cdot 0.1296) 2 \cdot 0.148 \cdot (1 \cdot 0.25 1 \cdot 0.1296) \cdot (1 1)$
- = 0.0959 in²

 A_2 = smaller of the following= <u>0.0903</u> in²

- = $5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= 5 \cdot (0.148 0.026) \cdot 1 \cdot 0.25$
- = 0.1525 in²
- = $5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t_n$
- $= 5 \cdot (0.148 0.026) \cdot 1 \cdot 0.148$
- = 0.0903 in²

 $A_{41} = Leg^2 \cdot f_{r2}$

- = 0.25² · 1
- = 0.0625 in²

 $Area = A_1 + A_2 + A_{41}$

- = 1.0032 + 0.0903 + 0.0625
- = <u>1.156</u> in²

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P\cdot R_n}{S_n\cdot E - 0.6\cdot P} + \text{Corrosion}$
	=	$\frac{166.0759\cdot 4.1645}{26,700\cdot 1-0.6\cdot 166.0759}+0$
	=	0.026 in
t_a	=	$\max\ [t_{a\mathrm{UG-27}},t_{a\mathrm{UG-22}}]$
	=	$\max \ [0.026, 0]$
	=	0.026 in
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{166.0759 \cdot 20.75}{26,700 \cdot 1 - 0.6 \cdot 166.0759} + 0$
	=	0.1295 in
t_{b1}	=	0.1295 in $\max \; [t_{b1}, t_{b \mathrm{UG16}}]$
t_{b1}		
t_{b1}	=	$\max\left[t_{b1},t_{b\mathrm{UG16}}\right]$
t_{b1}	=	$\max [t_{b1}, t_{b\mathrm{UG16}}] \ \max [0.1295, 0.0625]$
	=	$\max [t_{b1}, t_{b\mathrm{UG16}}]$ $\max [0.1295, 0.0625]$ 0.1295 in
	= = =	$\begin{array}{l} \max \left[t_{b1}, t_{b\mathrm{UG16}} \right] \\ \max \left[0.1295, 0.0625 \right] \\ 0.1295 \mathrm{in} \\ \min \left[t_{b3}, t_{b1} \right] \\ \min \left[0.2818, 0.1295 \right] \end{array}$
	=	$\begin{array}{l} \max \left[t_{b1}, t_{b\mathrm{UG16}} \right] \\ \max \left[0.1295, 0.0625 \right] \\ 0.1295 \mathrm{in} \\ \min \left[t_{b3}, t_{b1} \right] \\ \min \left[0.2818, 0.1295 \right] \end{array}$
t_b	=	$\begin{array}{l} \max \left[t_{b1}, t_{b \mathrm{UG16}} \right] \\ \max \left[0.1295, 0.0625 \right] \\ 0.1295 \mathrm{in} \\ \min \left[t_{b3}, t_{b1} \right] \\ \min \left[0.2818, 0.1295 \right] \\ 0.1295 \mathrm{in} \\ \max \left[t_a, t_b \right] \end{array}$

Available nozzle wall thickness new, t_{n} = $0.875 \cdot 0.148$ = 0.1295 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAP

The thickness requirements of UG-45 govern the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)					UG-45 Sur	nmary (in)		
For P = 168.56 psi @ 70 °F The opening is adequately reinforced					The nozzle p	asses UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
<u>1.079</u>	<u>1.156</u>	<u>1.0032</u>	<u>0.0903</u>		_	<u>0.0625</u>	<u>0.1295</u>	0.1295

UG-41 Weld Failure Path Analysis Summary The nozzle is exempt from weld strength calculations per UW-15(b)(1)

Calculations for internal pressure 168.56 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

 $L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[8.329, 4.1645 + (0.148 0) + (0.25 0) \right]$
- = 8.329 in

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- = min $[2.5 \cdot (0.25 0), 2.5 \cdot (0.148 0) + 0]$
- = 0.37 in

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$

=
$$\frac{168.5595 \cdot 4.1645}{27,100 \cdot 1 - 0.6 \cdot 168.5595}$$

=
$$0.026 \text{ in}$$

Required thickness tr from UG-37(a)

 $t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$ = $\frac{168.5595 \cdot 20.75}{27,100 \cdot 1 - 0.6 \cdot 168.5595}$ = 0.1295 in

Required thickness t_r per Interpretation VIII-1-07-50

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

=
$$\frac{168.5595 \cdot 20.75}{27,100 \cdot 0.7 - 0.6 \cdot 168.5595}$$

= 0.1854 in

Area required per UG-37(c)

Allowable stresses: S_n = 27,100, S_v = 27,100 psi

$$f_{r1} = \text{lesser of 1 or } \frac{S_n}{S_v} = 1$$

$$f_{r2} = \text{lesser of 1 or } \frac{S_n}{S_v} = 1$$

$$A = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$$

$$= 8.329 \cdot 0.1296 \cdot 1 + 2 \cdot 0.148 \cdot 0.1296 \cdot 1 \cdot (1 - 1)$$

$$= 1.079 \text{ in}^2$$

Area available from FIG. UG-37.1

 A_1 = larger of the following = 1.0032 in²

- $= \quad d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- = $8.329 \cdot (1 \cdot 0.25 1 \cdot 0.1296) 2 \cdot 0.148 \cdot (1 \cdot 0.25 1 \cdot 0.1296) \cdot (1 1)$
- = 1.0032 in²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r_1})$$

- $= 2 \cdot (0.25 + 0.148) \cdot (1 \cdot 0.25 1 \cdot 0.1296) 2 \cdot 0.148 \cdot (1 \cdot 0.25 1 \cdot 0.1296) \cdot (1 1)$
- = 0.0959 in²

 A_2 = smaller of the following= <u>0.0903</u> in²

- = $5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= 5 \cdot (0.148 0.026) \cdot 1 \cdot 0.25$
- = 0.1525 in²
- = $5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t_n$
- $= 5 \cdot (0.148 0.026) \cdot 1 \cdot 0.148$
- = 0.0903 in²

 $A_{41} = Leg^2 \cdot f_{r2}$

- = 0.25² · 1
- = 0.0625 in²

 $\begin{array}{rcl} Area &=& A_1 + A_2 + A_{41} \\ &=& 1.0032 + 0.0903 + 0.0625 \end{array}$

= <u>1.156</u> in²

As Area >= A the reinforcement is adequate.

UG-45 Nozzle Neck Thickness Check

$$\begin{array}{lll} t_{a\rm UG-27} & = & \displaystyle \frac{P\cdot R_n}{S_n\cdot E - 0.6\cdot P} + {\rm Corrosion} \\ \\ & = & \displaystyle \frac{168.5595\cdot 4.1645}{27,100\cdot 1 - 0.6\cdot 168.5595} + 0 \\ \\ & = & \displaystyle 0.026 \ \ {\rm in} \end{array}$$

t_a	=	$\max\left[t_{a\mathrm{UG-27}},t_{a\mathrm{UG-22}}\right]$
	=	$\max [0.026, 0]$
	=	0.026 in
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{168.5595 \cdot 20.75}{27,\!100 \cdot 1 - 0.6 \cdot 168.5595} + 0$
	=	0.1295 in
t_{b1}	=	$\max\ [t_{b1},t_{b\mathrm{UG16}}]$
	=	$\max\ [0.1295, 0.0625]$
	=	0.1295 in
t_b	=	$\min \ [t_{b3},t_{b1}]$
	=	min $[0.2818, 0.1295]$
	=	0.1295 in
$t_{ m UG-45}$	=	$\max [t_a, t_b]$
	=	$\max[0.026, 0.1295]$
	=	<u>0.1295</u> in

Available nozzle wall thickness new, $t_{\textrm{n}}$ = $0.875 \cdot 0.148$ = 0.1295 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)					UG-45 Sur	nmary (in)		
For Pe = 55.17 psi @ 250 °F The opening is adequately reinforced					The nozzle p	asses UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
<u>0.7409</u>	<u>0.741</u>	<u>0.6005</u>	<u>0.078</u>	-	-	<u>0.0625</u>	<u>0.0625</u>	0.1295

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary					
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status		
Nozzle to shell fillet (Leg ₄₁)	<u>0.1036</u>	0.175	weld size is adequate		

Calculations for external pressure 55.17 psi @ 250 °F

Parallel Limit of reinforcement per UG-40

$$L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$$

- = $\max [8.329, 4.1645 + (0.148 0) + (0.25 0)]$
- = 8.329 in

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- = min $[2.5 \cdot (0.25 0), 2.5 \cdot (0.148 0) + 0]$
- = 0.37 in

Nozzle required thickness per UG-28 t_{rn} = 0.0426 in

From UG-37(d)(1) required thickness $t_r = 0.1779$ in

Area required per UG-37(d)(1)

Allowable stresses: S_n = 26,700, S_v = 26,700 psi

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

$$A = 0.5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1}))$$

= 0.5 \cdot (8.329 \cdot 0.1779 \cdot 1 + 2 \cdot 0.148 \cdot 0.1779 \cdot 1 \cdot (1 - 1))
= 0.7409 in²

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>0.6005</u> in²

 $= d \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$

- $= 8.329 \cdot (1 \cdot 0.25 1 \cdot 0.1779) 2 \cdot 0.148 \cdot (1 \cdot 0.25 1 \cdot 0.1779) \cdot (1 1)$
- = 0.6005 in²
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1-f_{r1})$
- = $2 \cdot (0.25 + 0.148) \cdot (1 \cdot 0.25 1 \cdot 0.1779) 2 \cdot 0.148 \cdot (1 \cdot 0.25 1 \cdot 0.1779) \cdot (1 1)$
- = 0.0574 in²

 A_2 = smaller of the following= <u>0.078</u> in²

- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= 5 \cdot (0.148 0.0426) \cdot 1 \cdot 0.25$
- = 0.1318 in²
- = $5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t_n$
- $= 5 \cdot (0.148 0.0426) \cdot 1 \cdot 0.148$
- = 0.078 in²

 $A_{41} = Leg^2 \cdot f_{r2}$

- = 0.25² · 1
- $= 0.0625 \text{ in}^2$

 $Area = A_1 + A_2 + A_{41}$

- = 0.6005 + 0.078 + 0.0625
- = <u>0.741</u> in²

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-28}}$	=	0.0426 in
t_a	=	$\max\left[t_{a\mathrm{UG-28}},t_{a\mathrm{UG-22}}\right]$
	=	$\max [0.0426, 0]$
	=	0.0426 in
t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{55.1748 \cdot 20.75}{26,700 \cdot 1 - 0.6 \cdot 55.1748} + 0$
	=	0.0429 in

t_{b2}	=	$\max\left[t_{b2},t_{b\mathrm{UG16}}\right]$
	=	$\max\ [0.0429, 0.0625]$
	=	0.0625 in
t_b	=	$\min \; [t_{b3}, t_{b2}]$
	=	$\min\ [0.2818, 0.0625]$
	=	0.0625 in
$t_{ m UG-45}$	=	$\max \ [t_a,t_b]$
	=	$\max\ [0.0426, 0.0625]$
	=	<u>0.0625</u> in

Available nozzle wall thickness new, t_{n} = $0.875 \cdot 0.148$ = 0.1295 in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 250 °F) UG-28(c)

 $\frac{L}{D_o} = \frac{6.5726}{8.625} = 0.7620$ $\frac{D_o}{t} = \frac{8.625}{0.0426} = 202.6939$

From table G: A = 0.000614From table HA-5: B = 8,387.846 psi

 $P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 8,387.85}{3 \cdot (8.625/0.0426)} = 55.18 \ \, \mathrm{psi}$

Design thickness for external pressure $P_a = 55.18$ psi

 $t_a = t + \text{Corrosion} = 0.0426 + 0 = 0.0426$ "

Tube Side Flange (front)

ASM	E Section VIII I	Division 1, 2019	Edition , Appendix 2 Flai	nge Calculations			
Flang	је Туре		Ring type integral				
Attachn	nent Type	Figure UW-13.2 sketch (n)					
Flange	Material	SA-182 F60 (II-D p. 128, In. 43)					
Attac	hed To		Front Channel (Rig	ht)			
Impact Tested	Normalized	Fine Grain Practice	РѠҤТ	Maximize MDMT/ No MAWP			
Yes (-20°F)	No	No	No	No			
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)			
Inte	ernal	60	250	40			
Ext	ernal	15	250	40			
		Static	Liquid Head				
Con	dition		P _s (psi)				
Ope	rating		1.49				
		Din	nensions				
Flang	e OD, A	47"					
Flang	je ID, B	41.5"					
Bolt C	Circle, C	45.0625"	A				
Gasl	ket OD	42.9"	Rf				
Gas	ket ID	42.6"	Gasket OD				
Raised	I Face ID	42.9"	Gasket ID				
Facing	Height, t _{rf}	0"					
Flange T	hickness, t	1.75"	tp				
Hub Thie	ckness, g ₁	0.6071"	φ.	1			
Hub Thie	ckness, g ₀	0.25"	ht I				
Fillet	Weld, h	0.375"		-gt			
Groove	e Weld, w	0.25"	B	—q0			
Edge Di	stance, t _p	1.6"		30			
Corros	ion Bore	0"					
Corrosi	on Flange	0"					
		l	Bolting				
Ma	terial	SA-	-193 B7 Bolt <= 2 1/2 (II-D	p. 398, In. 32)			
Desc	ription		28 - 0.625" coarse thre	eaded			
Corrosio	on on root		0"				
		(Gasket				
Fac	tor, m		0				
Seating	Stress, y		0 psi				
Thick	ness, T		0.125"				
		We	eight (lb)				
N	ew		188.7 lb				

Corroded	188.7 lb			
Radiography				
Longitudinal seam	Seamless No RT			
Left Circumferential seam	N/A			

Results Summary					
Flange design thickness:	1.3119"				
Maximum allowable working pressure, MAWP:	86.65 psi @ 250 °F				
Maximum allowable pressure, MAP:	89.46 psi @ 70 °F				
Maximum allowable external pressure, MAEP:	150 psi @ 250 °F (App 2-14(a) limits)				
Rated MDMT	-20 °F				

Note: this flange is an optional type calculated as integral. The following values are used in the calculations: g_0 = shell/nozzle wall thickness, h = actual length of flange hub plus fillet weld leg attaching hub to shell/nozzle Appendix 2-14(a) successful service experience active. Flange rigidity calculations are not performed for conditions where service restrictions are met.

UHA-51 Material Toughness Requirements					
Material impact test temperature per UHA-51(a) =	-20°F				
Bolts rated MDMT per Fig UCS-66 note (c) =	-55°F				
Design MDMT of 40°F is acceptable.					

Stress Summary										
			P (psi)	S _H (psi)	Allow (psi)	S _R (psi)	S _T (psi)	(S _H + S _R) / 2 (psi)	(S _H + S _T) / 2 (psi)	Allow (psi)
Design P	Weight Only	Oper	61.49	<u>27,941</u>	40,050	<u>1,187</u>	<u>6,519</u>	<u>14,564</u>	<u>17,230</u>	26,700
		Seating		<u>26,547</u>	40,650	<u>1,128</u>	<u>6,194</u>	<u>13,838</u>	<u>16,371</u>	27,100
Design P _e	Weight Only	Oper	15	<u>1,819</u>	40,050	77	<u>424</u>	<u>948</u>	<u>1,121</u>	26,700
		Seating		<u>16,304</u>	40,650	<u>693</u>	<u>3,804</u>	<u>8,498</u>	<u>10,054</u>	27,100

Bolt Summary								
		P (psi)	W (lb _f)	A _m (in ²)	A _b (in ²)			
Design P	Weight Only	Oper	61.49	<u>88,834.5</u>	<u>3.55</u>	5.66		
		Seating		<u>0</u>	<u>0</u>			
Design P _e	Weight Only	Oper	15	21,670.83	<u>0</u>	5.66		
Designine		Seating		<u>0</u>	<u>0</u>	5.00		

Figure UW-13.2 Weld Sizing								
$a+b \geq 3t_n+C_{i,shell}+rac{C_{o,shell}}{0.7}$								
$h \geq rac{\min{[t_n,t_x]}+C_{o,shell}}{0.7}$								
$t_p \geq \min \left[t_n, 0.25" ight] + C_o$								
Results								
a+b =	0.7571"	\geq	$3\cdot 0.25 + 0 + rac{0}{0.7} =$	0.75"	~			
h =	0.375"	2	$\frac{\min\ [0.25, 0.5] + 0}{0.7} =$	0.3571"	~			
$g_1 - g_0 =$	0.3571"	\geq	$\frac{\min\ [0.25, 0.5] + 0}{0.7} =$	0.3571"	~			
$t_p =$	1.6"	\geq	$\min\ [0.25, 0.25] + 0 =$	0.25"	~			

Flange calculations for Internal Pressure + Weight Only

Gasket details from facing sketch Confined gasket 1(a)

Gasket width N = 0.15 in

$$b_0 = \frac{N}{2} = 0.075$$
 in

Effective gasket seating width, $b = b_0 = 0.075$ in

G = OD of contact face = 42.9 in (per VIII-1 Appendix 2-5 (c)3(a) for self energizing gaskets)

$$h_G = \frac{C-G}{2} = \frac{45.0625 - 42.9}{2} = 1.0813$$
 in

$$h_D = rac{R+g_1}{2} = rac{1.1741+0.6071}{2} = 1.4777$$
 in

$$h_T = rac{R+g_1+h_G}{2} = rac{1.1741+0.6071+1.0813}{2} = 1.4313$$
 in

 $H_p = 0$ per VIII-1 Appendix 2-5 (c)3(a) for self energizing gaskets.

$$H = 0.785 \cdot G^2 \cdot P = 0.785 \cdot 42.9^2 \cdot 61.489 = 88,834.5 \ \text{lb}_f$$

$$H_D = 0.785 \cdot B^2 \cdot P = 0.785 \cdot 41.5^2 \cdot 61.489 = 83,131.05$$
 lb _f

$$H_T = H - H_D = 88,834.5 - 83,131.05 = 5,703.45$$
 lb_f

$$W_{m1} = H + H_p = 88,834.5 + 0 = 88,834.5$$
 lbf

 $W_{m2} = 3.14 \cdot b \cdot G \cdot y = 3.14 \cdot 0.075 \cdot 42.9 \cdot 0 = 0$ lbf

Required bolt area, A_m = greater of A_{m1} , A_{m2} = 3.5534 in²

$$A_{m1} = \frac{W_{m1}}{S_b} = \frac{88,834.5}{25,000} = \frac{3.5534 \text{ in}^2}{25,000}$$

$$A_{m2} = \frac{W_{m2}}{S_a} = \frac{0}{25,000} = \frac{0 \text{ in}^2}{2}$$

Total area for 28 - 0.625" coarse threaded bolts, corroded, A_{b} = 5.656 \mbox{in}^{2}

$$W = \frac{(A_m + A_b) \cdot S_a}{2} = \frac{(3.5534 + 5.656) \cdot 25,000}{2} = 115,117.25 \text{ lb}_f$$

$$\begin{split} M_D &= H_D \cdot h_D = 83,\!131.05 \cdot 1.4777 = 122,\!841 \quad \text{lb}_f\text{-in} \\ M_T &= H_T \cdot h_T = 5,\!703.45 \cdot 1.4313 = 8,\!163.1 \quad \text{lb}_f\text{-in} \end{split}$$

$$H_G = W_{m1} - H = 88,834.5 - 88,834.5 = 0$$
 lb_f

 $M_G = H_G \cdot h_G = 0 \cdot 1.0813 = 0$ lb_f-in

$$M_o = M_D + M_T + M_G = 122,841 + 8,163.1 + 0 = 131,004$$
 lb_f-in

$$M_g = W \cdot h_G = 115,117.25 \cdot 1.0813 = 124,470.5$$
 lb_f-in

Hub and Flange Factors

$$g_{0} = t_{n} = 0.25 \text{ in}$$

$$h_{0} = \sqrt{B \cdot g_{0}} = \sqrt{41.5 \cdot 0.25} = 3.221 \text{ in}$$
From FIG. 2-7.1, where $K = \frac{A}{B} = \frac{47}{41.5} = 1.1325$

$$T = 1.8653 \quad Z = 8.0765 \quad Y = 15.6248 \qquad U = 17.1701$$

$$\frac{h}{h_{0}} = 0.1164 \quad \frac{g_{1}}{g_{0}} = 2.4286$$

$$F = 0.9027 \quad V = 0.4101 \quad e = \frac{F}{h_{0}} = 0.2803$$

$$d = \left(\frac{U}{V}\right) \cdot h_{0} \cdot g_{0}^{2} = \left(\frac{17.1701}{0.4101}\right) \cdot 3.221 \cdot 0.25^{2} = 8.4284 \text{ in}^{3}$$
Stresses at operating conditions - VIII-1 Appendix 2-7
$$f = 4.6818$$

$$L = \frac{t \cdot e + 1}{T} + \frac{t^{3}}{d} = \frac{1.75 \cdot 0.2803 + 1}{1.8653} + \frac{1.75^{3}}{8.4284} = 1.4349$$

$$S_{H} = \frac{f \cdot M_{o}}{L \cdot g_{1}^{2} \cdot B} = \frac{4.6818 \cdot 131.004}{1.4349 \cdot 0.6071^{2} \cdot 41.5} = 27.941 \text{ psi}$$

$$S_{R} = \frac{(1.33 \cdot t \cdot e + 1) \cdot M_{o}}{L \cdot t^{2} \cdot B} = \frac{(1.33 \cdot 1.75 \cdot 0.2803 + 1) \cdot 131.004}{1.4349 \cdot 1.75^{2} \cdot 41.5} = 1.187 \text{ psi}$$

$$S_{T} = \frac{Y \cdot M_{o}}{L^{2} \cdot B} - Z \cdot S_{R} = \frac{15.6248 \cdot 131.004}{1.75^{2} \cdot 41.5} - 8.0765 \cdot 1.187 = 6.519 \text{ psi}$$
Allowable stress Sf_{0} = 26.700 \text{ psi}

 $\begin{array}{l} \mathsf{S}_{\mathsf{T}} \mbox{ does not exceed } \mathsf{S}_{\mathsf{fo}} \\ \mathsf{S}_{\mathsf{H}} \mbox{ does not exceed } \min \left[1.5 \cdot S_{\mathit{fo}} \, , 1.5 \cdot S_{\mathit{no}} \right] = 40,050 \ \ \mbox{psi} \\ \mathsf{S}_{\mathsf{R}} \mbox{ does not exceed } \mathsf{S}_{\mathsf{fo}} \\ \hline \\ \frac{S_{\mathit{H}} + S_{\mathit{R}}}{2} \ = \ \underline{14.564} \ \mbox{psi} \ \mbox{ does not exceed } \mathsf{S}_{\mathsf{fo}} \\ \hline \\ \frac{S_{\mathit{H}} + S_{\mathit{T}}}{2} \ = \ \underline{17.230} \ \mbox{psi} \ \mbox{ does not exceed } \mathsf{S}_{\mathsf{fo}} \end{array}$

Stresses at gasket seating - VIII-1 Appendix 2-7

$$S_{H} = \frac{f \cdot M_{g}}{L \cdot g_{1}^{2} \cdot B} = \frac{4.6818 \cdot 124,470.5}{1.4349 \cdot 0.6071^{-2} \cdot 41.5} = \underline{26,547 \text{ psi}}$$

$$S_{R} = \frac{(1.33 \cdot t \cdot e + 1) \cdot M_{g}}{L \cdot t^{2} \cdot B} = \frac{(1.33 \cdot 1.75 \cdot 0.2803 + 1) \cdot 124,470.5}{1.4349 \cdot 1.75^{-2} \cdot 41.5} = \underline{1,128 \text{ psi}}$$

$$S_{T} = \frac{Y \cdot M_{g}}{t^{2} \cdot B} - Z \cdot S_{R} = \frac{15.6248 \cdot 124,470.5}{1.75^{-2} \cdot 41.5} - 8.0765 \cdot 1,128 = \underline{6,194 \text{ psi}}$$
Allowable stress S_{fa} = 27,100 psi

Allowable stress $S_{na} = 27,100 \text{ psi}$

 $f S_T$ does not exceed $f S_{fa}$ $f S_H$ does not exceed min $[1.5\cdot S_{fa}, 1.5\cdot S_{na}] = 40,650$ psi $f S_R$ does not exceed $f S_{fa}$

 $\frac{S_H + S_R}{2} = \frac{13,838}{12}$ psi does not exceed S_{fa} $\frac{S_H + S_T}{2} = \frac{16,371}{12}$ psi does not exceed S_{fa}

Flange calculations for External Pressure + Weight Only per VIII-1, Appendix 2-11

Gasket details from facing sketch Confined gasket 1(a)

Gasket width N = 0.15 in

$$b_0 = \frac{N}{2} = 0.075$$
 in

Effective gasket seating width, $b = b_0 = 0.075$ in

G = OD of contact face = 42.9 in (per VIII-1 Appendix 2-5 (c)3(a) for self energizing gaskets)

$$h_G = \frac{C-G}{2} = \frac{45.0625 - 42.9}{2} = 1.0813$$
 in

$$h_D = rac{R+g_1}{2} = rac{1.1741+0.6071}{2} = 1.4777$$
 in

$$h_T = rac{R+g_1+h_G}{2} = rac{1.1741+0.6071+1.0813}{2} = 1.4313$$
 in

 $H_p = 0$ per VIII-1 Appendix 2-5 (c)3(a) for self energizing gaskets.

$$H = 0.785 \cdot G^2 \cdot P = 0.785 \cdot 42.9^2 \cdot 15 = 21,670.83 \text{ lb}_f$$

 $H_D = 0.785 \cdot B^2 \cdot P = 0.785 \cdot 41.5^2 \cdot 15 = 20,279.49$ lb _f

 $H_T = H - H_D = 21,670.83 - 20,279.49 = 1,391.33$ lb_f

 $W_{m1} = H + H_p = 21,670.83 + 0 = 21,670.83 \text{ lb}_{f}$

 $W_{m2} = 3.14 \cdot b \cdot G \cdot y = 3.14 \cdot 0.075 \cdot 42.9 \cdot 0 = 0$ lbf

Required bolt area, A_m = greater of A_{m1} , A_{m2} = 0 in²

$$A_{m1} = \frac{0.785 \cdot G^2 \cdot (P_m - P_r)}{S_b} = \frac{0.785 \cdot 42.9^2 \cdot 0}{25,000} = \frac{0 \text{ in}^2}{2}$$

$$A_{m2} = \frac{W_{m2}}{S_a} = \frac{0}{25,000} = \frac{0 \text{ in}^2}{2}$$

Total area for 28 - 0.625" coarse threaded bolts, corroded, $A_b = 5.656 \text{ in}^2$

$$\begin{split} W &= \frac{(A_{m2} + A_b) \cdot S_a}{2} = \frac{(0 + 5.656) \cdot 25,000}{2} = 70,700 \quad \text{lb}_f \\ M_o &= H_D \cdot (h_D - h_G) + H_T \cdot (h_T - h_G) = 20,279.49 \cdot (1.4777 - 1.0813) + 1,391.33 \cdot (1.4313 - 1.0813) = 8,526.3 \quad \text{lb}_f\text{-in} \\ M_g &= W \cdot h_G = 70,700 \cdot 1.0813 = 76,444.4 \quad \text{lb}_f\text{-in} \end{split}$$

Hub and Flange Factors

$$g_{0} = t_{n} = 0.25 \text{ in}$$

$$h_{0} = \sqrt{B \cdot g_{0}} = \sqrt{41.5 \cdot 0.25} = 3.221 \text{ in}$$
From FIG. 2-7.1, where $K = \frac{A}{B} = \frac{47}{41.5} = 1.1325$

$$T = 1.8653 \quad Z = 8.0765 \quad Y = 15.6248 \qquad U = 17.1701$$

$$\frac{h}{h_{0}} = 0.1164 \quad \frac{g_{1}}{g_{0}} = 2.4286$$

$$F = 0.9027 \quad V = 0.4101 \quad e = \frac{F}{h_{0}} = 0.2803$$

$$d = \left(\frac{U}{V}\right) \cdot h_{0} \cdot g_{0}^{2} = \left(\frac{17.1701}{0.4101}\right) \cdot 3.221 \cdot 0.25^{2} = 8.4284 \text{ in}^{3}$$
Stresses at operating conditions - VIII-1 Appendix 2-7
$$f = 4.6818$$

$$L = \frac{t \cdot e + 1}{T} + \frac{t^{3}}{d} = \frac{1.75 \cdot 0.2803 + 1}{1.8653} + \frac{1.75^{3}}{8.4284} = 1.4349$$

$$S_{H} = \frac{f \cdot M_{o}}{L \cdot g_{1}^{2} \cdot B} = \frac{4.6818 \cdot 8.526.3}{1.4349 \cdot 0.6071^{2} \cdot 41.5} = 1.819 \text{ psi}$$

$$S_{R} = \frac{(1.33 \cdot t \cdot e + 1) \cdot M_{o}}{L \cdot t^{2} \cdot B} = \frac{(1.33 \cdot 1.75 \cdot 0.2803 + 1) \cdot 8.526.3}{1.4349 \cdot 1.75^{2} \cdot 41.5} = 77 \text{ psi}$$

$$S_{T} = \frac{Y \cdot M_{o}}{t^{2} \cdot B} - Z \cdot S_{R} = \frac{15.6248 \cdot 8.526.3}{1.75^{2} \cdot 41.5} - 8.0765 \cdot 77 = 424 \text{ psi}$$
Allowable stress $S_{f_{0}} = 26,700 \text{ psi}$

Allowable stress $S_{fo} = 26,700$ psi Allowable stress $S_{no} = 26,700$ psi

 $\begin{array}{l} \mathsf{S}_{\mathsf{T}} \text{ does not exceed } \mathsf{S}_{\mathsf{fo}} \\ \mathsf{S}_{\mathsf{H}} \text{ does not exceed } \min \left[1.5 \cdot S_{\mathit{fo}} \, , 1.5 \cdot S_{\mathit{no}} \right] = 40,050 \hspace{0.2cm} \mathrm{psi} \\ \mathsf{S}_{\mathsf{R}} \text{ does not exceed } \mathsf{S}_{\mathsf{fo}} \\ \frac{S_{\mathit{H}} + S_{\mathit{R}}}{2} \hspace{0.2cm} = \hspace{0.2cm} \frac{948}{2} \hspace{0.2cm} \mathrm{psi} \hspace{0.2cm} \mathrm{does not exceed} \hspace{0.2cm} \mathsf{S}_{\mathsf{fo}} \\ \frac{S_{\mathit{H}} + S_{\mathit{T}}}{2} \hspace{0.2cm} = \hspace{0.2cm} \frac{948}{2} \hspace{0.2cm} \mathrm{psi} \hspace{0.2cm} \mathrm{does not exceed} \hspace{0.2cm} \mathsf{S}_{\mathsf{fo}} \end{array}$

Stresses at gasket seating - VIII-1 Appendix 2-7

$$S_{H} = \frac{f \cdot M_{g}}{L \cdot g_{1}^{2} \cdot B} = \frac{4.6818 \cdot 76,444.4}{1.4349 \cdot 0.6071^{-2} \cdot 41.5} = \underline{16,304 \text{ psi}}$$

$$S_{R} = \frac{(1.33 \cdot t \cdot e + 1) \cdot M_{g}}{L \cdot t^{2} \cdot B} = \frac{(1.33 \cdot 1.75 \cdot 0.2803 + 1) \cdot 76,444.4}{1.4349 \cdot 1.75^{-2} \cdot 41.5} = \underline{693 \text{ psi}}$$

$$S_{T} = \frac{Y \cdot M_{g}}{t^{2} \cdot B} - Z \cdot S_{R} = \frac{15.6248 \cdot 76,444.4}{1.75^{-2} \cdot 41.5} - 8.0765 \cdot 693 = \underline{3,804 \text{ psi}}$$
Allowable stress S_{fa} = 27,100 psi

Allowable stress $S_{fa} = 27,100 \text{ psi}$ Allowable stress $S_{na} = 27,100 \text{ psi}$ S_{T} does not exceed S_{fa}

S_H does not exceed min $[1.5 \cdot S_{fa}, 1.5 \cdot S_{na}] = 40,650$ psi

 $S_{R}\,\text{does}$ not exceed S_{fa}

 $rac{S_H+S_R}{2}=rac{8,498}{2}$ psi does not exceed S_{fa} $rac{S_H+S_T}{2}=rac{10.054}{2}$ psi does not exceed S_{fa}

Tubesheet -- ASME

ASME Section VIII Division 1, 2019 Edition			
Type of heat exchanger:	Fixed Both Ends		
Type of construction:	Fixed\Stationary tubesheet per Fig. UHX-13.1 Configuration b: shell-side integral, tubesheet extended as a flange		
Calculate as simply supported:	No		
Tubesheet material specification:	SA-240 S32205 (II-D p. 128, ln. 35)		
Normalized	No		
Fine Grain Practice	No		
Impact Tested	Yes (-20°F)		
PWHT	No		
Tube layout:	Triangular		
Tubesheet outer diameter, A:	47 in		
Tubesheet thickness, h:	1.25 in (t _{design} = 0.8706 in)		
Number of tubes, N _t :	342		
Tube pitch, p:	1.875 in		
Tube hole diameter:	1.514 in (Special Close Fit)		
Radius to outer tube center, r _o :	19.3718 in		
Total area of untubed lanes, AL:	10 in ²		
Pass partition groove depth, h _g :	0 in		
Corrosion allowance shell side , c _s :	0 in		
Corrosion allowance tube side , c _t :	0 in		
Tubesheet poisson's ratio, v:	0.3		
Perimeter of the tube layout, C _p :	130.1745 in		
Total area enclosed by C _p , A _p :	1,102.2442 in ²		
Consider radial thermal expansion per UHX-13.8:	No		
Gasket groove depth shell side:	0 in		
Gasket groove depth tube side:	0 in		
	Shell		
Material specification:	SA-240 304 (II-D p. 88, In. 37)		
Inner diameter, D _s :	41.625 in		
Thickness, t _s :	0.1874 in		
Inner corrosion allowance:	0 in		
Outer corrosion allowance:	0 in		
Poisson's ratio, v _s :	0.31		
Circumferential weld joint efficiency, E _{s,w} :	0.7		
	Shell Band		
Material specification:	SA-240 304 (II-D p. 88, In. 37)		
Thickness, t _{s,1} :	0.1874 in		
Inner corrosion allowance:	0 in		
Outer corrosion allowance:	0 in		
Length, L ₁ :	12 in		
Length, L ₂ :	12 in		
Circumferential weld joint efficiency, E _{s,w} :	0.7		
	Channel		
Material specification:	SA-240 S32205 (II-D p. 128, ln. 35)		
Inner diameter, D _c :	41.5 in		

Thickness, t _c :	0.25 in			
Inner corrosion allowance:	0 in			
Outer corrosion allowance:	0 in			
Poisson's ratio, v _c :	0.3			
	Tubes			
Tube material specification:	SA-789 Wld tube S32205 (II-D p. 128, In. 46)			
Tube outer diameter, d _t :	1.5 in			
Tube nominal thickness, t _t :	0.049 in			
Tube minimum thickness, t _{t,min} :	0.0429 in			
Tube tolerance:	12.5%			
Tube length between outer tubesheet faces, Lt:	144 in			
Tube inner corrosion allowance:	0 in			
Tube outer corrosion allowance:	0 in			
Tube expansion depth ratio, ρ:	0.85			
Tube poisson's ratio, v _t :	0.3			
	Flange			
Bolt circle diameter, C:	45.0625 in			
Channel side gasket load reaction diameter, G _c :	42.9 in			
Т	ube Supports			
Tube supports present:	Yes			
Support all tubes:	No			
Maximum distance from tubesheet to first support:	122 in			
Maximum distance between tube supports:	0 in			
Tube-To-Tubesheet Joints				
Calculation method:	Appendix A			
Joint type:	Table A-2 Type e, Welded, a ≥ 1.4 *t, and expanded			

Tube-To-Tubesheet Joint Loads

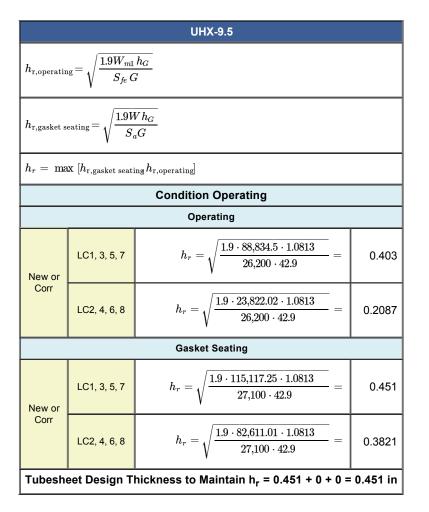
Summary Tables

Tubesheet Design Thickness Summary				
Condition	t _{design} (in)			
<u>Operating</u>	0.8705959			

Tubesheet Effective Bolt Load					
Condition	Load Case	W [*] (Ib _f)			
	LC1	88,834.5			
	LC2	0			
	LC3	88,834.5			
Operating	LC4	0			
Operating	LC5	115,117.25			
	LC6	82,611.01			
	LC7	115,117.25			
	LC8	82,611.01			

	Pressures											
	Shell Side				Tube Side							
Condition	P _{sd,max} (psi)	P _{sd,min} (psi)	P _{sox,max} (psi)	P _{sox,min} (psi)	Static Pressure (psi)	Consider Liquid	P _{td,max} (psi)	P _{td,min} (psi)	P _{tox,max} (psi)	P _{tox,min} (psi)	Static Pressure (psi)	Consider Liquid
<u>Operating</u>	25	-15	25	-15	0	No	60	-15	60	-15	1.49	Yes

Temperatures						
Condition	Tubesheet design T (°F)	Shell design T _s (°F)	Channel design T _c (°F)	Tube design T _t (°F)	Shell mean T _{s,m} (°F)	Tube mean T _{t,m} (°F)
<u>Operating</u>	300	300	250	300	250	250


	Material Properties							
Condition	Component	Material	Modulus of Elasticity (psi)	Allowable Stress (psi)	Yield Stress (psi)	Mean Coefficient Thermal Expansion		
	Shell	SA-240 304	E _s = 27.0E+06	S _s = 18,900	S _{y,s} = 22,400	α _{s,m} = 9.10E-06		
	Shell Band	SA-240 304	E _{s,1} = 27.0E+06	S _{s,1} = 18,900	$S_{y,s,1} = 22,400$	α _{s,m,1} = 9.10E-06		
Onentine	Channel	SA-240 S32205	E _c = 27.85E+06	S _c = 26,700	S _{y,c} = 55,500	N/A		
<u>Operating</u>	Tubesheet	SA-240 S32205	E = 27.5E+06	S = 26,200	S _y = 53,700	N/A		
	Tubes SA		E _t = 27.5E+06	S _t = 26,235 [*]	S _{y,t} = 57,900	α _{t,m} = 7.30E-06		
		Tubes SA-789 Wid tube S32205	E _{tT} =27.5E+06	S _{tT} =26,235 [*]	N/A	N/A		

*The allowable tensile stress from Section II-D has been divided by 0.85 as the calculated stresses are longitudinal.

Calculations for Operating Condition

Table UHX-13.4-1					
Design Loading Case	Shell Side Design Pressure, P _s (psi)	Tube Side Design Pressure, P _t (psi)			
1	-15	61.49			
2	25	-15			
3	25	61.49			
4	-15	-15			

Table UHX-13.4-2						
Operating	Operating	rating Pressure Axial Mea Metal Temper				
Loading Case	Shell Side, P _s (psi)	Tube Side, P _t (psi)	Tubes, T _{t,m} (°F)	Shell, T _{s,m} (°F)		
5	-15	61.49				
6	25	-15	- 250	250		
7	25	61.49		2.50		
8	-15	-15				

$x_t = 1 -$	$-N_tigg(rac{d_t-2t_t}{2a_o}igg)^2$	
$x_s = 1$	$-N_t igg(rac{d_t}{2a_o} igg)^2$	
	Condition Operating	
New or Corr	$D_o = 2 \cdot 19.3718 + 1.5 =$	40.2436
New or Corr	$\mu = \frac{1.875 - 1.5}{1.875} =$	0.2
New or Corr	$d^* = \max\left(1.5 - 2 \cdot 0.049 \cdot \left(rac{27.5 ext{E} + 06}{27.5 ext{E} + 06} ight) \cdot \left(rac{26,235}{26,200} ight) \cdot 0.85, 1.5 - 2 \cdot 0.049 ight) =$	1.4165878
New or Corr	$p^* = rac{1.875}{\sqrt{1 - rac{4 \cdot \min(10, 4 \cdot 40.2436 \cdot 1.875)}{\pi \cdot 40.243 heta}}} =$	1.8824
New or Corr	$\mu^* = \frac{1.8824141 - 1.4165878}{1.8824141} =$	0.247462
New or Corr	$h_g' =$	0
New or Corr	$a_o = rac{40.2436}{2} =$	20.1218
New or Corr	$ ho_s = rac{20.8125}{20.1218} =$	1.034327
New or Corr	$ ho_c = rac{21.45}{20.1218} =$	1.066009
New or Corr	$x_s = 1 - 342 \cdot \left(rac{1.5}{2 \cdot 20.1218} ight)^2 =$	0.524867
New or Corr	$x_t = 1 - 342 \cdot \left(rac{1.5 - 2 \cdot 0.049}{2 \cdot 20.1218} ight)^2 =$	0.584923

	UHX-13.5.2 Step 2				
$K_s^* = - rac{1}{2}$	$rac{\pi(D_s+t_s)}{rac{L-l_1-l_1'}{E_st_s}}+rac{l_1+l_1'}{E_{s,1}t_{s,1}}}$				
$K_t = \frac{\pi}{2}$	$rac{t_t(d_t\ -t_t)E_t}{L}$				
$K_{s,t} = \cdot$	$rac{K_s^*}{N_tK_t}$				
J = -	$\frac{1}{-\frac{K_s^*}{K_J}}$				
$\beta_s = - \frac{1}{\sqrt{1-1}}$	$\sqrt[4]{12(1- u_s^2)} / (D_s+t_{s,1})t_{s,1}}$				
$k_s=eta_s$	$\frac{\overline{E_{s,1}t_{s,1}^3}}{6\bigl(1-\nu_s^2\bigr)}$				
$\lambda_s = \frac{6\lambda_s}{h}$	$rac{D_s}{k^3}k_sigg(1+heta_s+rac{h^2eta_s^2}{2}igg)$				
$\delta_s = rac{1}{4I}$	$rac{D_s^2}{E_{s,1}t_{s,1}}\Big(1-rac{ u_s}{2}\Big)$				
β _c , k _c ,	λ_c , & $\delta_c = 0$ for configuration b				
	Condition Operating				
New or Corr	$K_s^* = rac{\pi \cdot (41.625 + 0.1874)}{rac{141.5 - 12 - 12}{27.0 \mathrm{E} + 06 \cdot 0.1874} + rac{12 + 12}{27.0 \mathrm{E} + 06 \cdot 0.1874}} =$	4,697,122.43			
New or Corr	$K_t = rac{\pi \cdot 0.049 \cdot (1.5 - 0.049) \cdot 27.5 \mathrm{E}{+}06}{141.5} =$	43,409.98			
New or Corr	$K_{s,t} = rac{4,697,122.43}{342\cdot 43,409.98} =$	0.316385			
New or Corr	J = 1 as no expansion joint used				
New or Corr	$eta_s = rac{\sqrt[4]{12 \cdot ig(1 - 0.31\ ^2ig)}}{\sqrt{(41.625 + 0.1874) \cdot 0.1874}} =$	0.648318			
New or Corr	$k_s = 0.648318 \cdot rac{27.0 \mathrm{E} + 06 \cdot 0.1874 \; ^3}{6 \cdot ig(1 - 0.31 \; ^2ig)} =$	21,241.68			
New or Corr	$\lambda_s = \frac{6 \cdot 41.625}{1.25^{-3}} \cdot 21,\!241.68 \cdot \left(1 + 1.25 \cdot 0.648318 + \frac{1.25^{-2} \cdot 0.648318^{-2}}{2}\right) =$	5,809,361			
New or Corr	$\delta_s = rac{41.625\ ^2}{4\cdot 27.0\mathrm{E}{+}06\cdot 0.1874} \cdot \left(1-rac{0.31}{2} ight) =$	7.2339E-05			

	UHX-13.5.3 Step 3	
$\boxed{\frac{E^*}{E}} = c$	$lpha_0+lpha_1\mu^*+lpha_2\mu^{*2}+lpha_3\mu^{*3}+lpha_4\mu^{*4}$	
$ u^* = eta_0 $	$+ eta_1 \mu^* + eta_2 \mu^{*2} + eta_3 \mu^{*3} + eta_4 \mu^{*4}$	
$X_a = \sqrt[4]{}$	$\sqrt{24ig(1-{ u^*}^2ig)N_trac{E_tt_t(d_t-t_t)a_o^2}{E^*Lh^3}}$	
	Condition Operating	
New or Corr	$\frac{h}{p} = \frac{1.25}{1.875} =$	0.6667
New or Corr	from Fig. UHX-11.5.2-1(a) $ ightarrow rac{E^{st}}{E} =$	0.2581
New or Corr	$E^* = 0.2581129 \cdot 27.5 \text{E} + 06 =$	7,098,105
New or Corr	from Fig. UHX-11.5.2-1(b) $ ightarrow u^* =$	0.3089
New or Corr	$X_a = \sqrt[4]{24 \cdot \left(1 - 0.3089124^{-2} ight) \cdot 342 \cdot rac{27.5 \mathrm{E} + 06 \cdot 0.049 \cdot (1.5 - 0.049) \cdot 20.1218^{-2}}{7,098,105 \cdot 141.5 \cdot 1.25^{-3}}} =$	7.3985
New or Corr	$Z_d =$	0.0036942
New or Corr	$Z_v =$	0.0186744
New or Corr	$Z_m =$	0.1970454
New or Corr	$Z_w =$	0.0186744
New or Corr	$Z_a =$	481.1062487

	UHX-13.5.4 Step 4	
$K = \frac{A}{D}$	 0	
$F = \left(\frac{1}{2}\right)$	$rac{1- u^*}{E^*}ig)(\lambda_s+\lambda_c+E\ln(K))$	
$\Phi = (1 + 1)$	$+ u^*)F$	
$Q_1 = \frac{ ho}{}$	$rac{s-1-\Phi Z_v}{1+\Phi Z_m}$	
$Q_{z1} = -$	$\frac{(Z_d+Q_1Z_w)X_a^4}{2}$	
$Q_{z2} = -$	$\frac{(Z_v+Q_1Z_m)X_a^4}{2}$	
$U = \frac{[Z]}{}$	$rac{1}{2w}+(ho_s-1)Z_m]X_a^4 \ 1+\Phi Z_m$	
	Condition Operating	
New or Corr	$K = rac{47}{40.2436} =$	1.1678883
New or Corr	$F = \left(\frac{1 - 0.3089124}{7,098,105}\right) \cdot (5,809,361.41 + 0 + 27.5\text{E} + 06 \cdot \ln(1.1679)) =$	0.9811474
New or Corr	$\Phi = (1 + 0.3089124) \cdot 0.9811474 =$	1.284236
New or Corr	$Q_1 = \frac{1.0343266 - 1 - 1.284236 \cdot 0.0186744}{1 + 1.284236 \cdot 0.1970454} =$	0.0082552
New or Corr	$Q_{z1} = rac{(0.0036942 + 0.0082552 \cdot 0.0186744) \cdot 7.3985286^{-4}}{2} =$	5.7654
New or Corr	$Q_{z2} = rac{(0.0186744 + 0.0082552 \cdot 0.1970454) \cdot 7.3985286^{-4}}{2} =$	30.4138
New or Corr	$U = rac{[0.0186744 + (1.0343266 - 1) \cdot 0.1970454] \cdot 7.3985286^{-4}}{1 + 1.284236 \cdot 0.1970454} =$	60.8276

	UHX-13.5.5 Step 5	
$\gamma_b = \frac{G}{G}$	$\frac{c-C}{D_o}$	
	Condition Operating	9
New or Corr	$\gamma_b = rac{42.9 - 45.0625}{40.2436} =$	-0.0537353

		UHX-13.5.5 Step 5	
$\gamma^{\cdot} = (T$	$(T_{t,m} - T_a) lpha_{t,m} L - (T_s)$	$(m_{s,m}-T_a)[lpha_{s,m}(L-l_1-l_1')+lpha_{s,m,1}(l_1+l_1')]$	
$\omega_s = ho_s$	$k_seta_s\delta_s(1+heta_s)$		
$\omega_c = \rho_c$	$k_ceta_c\delta_c(1+heta_c)$		
$\omega_s^* = a_a^2$	$+rac{(ho_s^2-1)(ho_s-1)}{4}-$	ω_s	
$\omega_c^* = a_c^2$	$\left\{ rac{\left(ho_c^2+1 ight)(ho_c-1)}{4} ight\}$	$-rac{ ho_s-1}{2} ight]-\omega_c$	
		Condition Operating	
		P _s (psi)	P _t (psi)
	LC1	-15	61.49
	LC2	25	-15
	LC3	25	61.49
	LC4	-15	-15
	LC5 -15		61.49
	LC6	25	-15
	LC7	25	61.49
	LC8	-15	-15
	LC1, 2, 3, 4	$\gamma^* =$	0
New or Corr		$\gamma^{\cdot} = (250-70) \cdot 7.30 ext{E-} 06 \cdot 141.5 - (250-70) \cdot$	0.045040
	LC5, 6, 7, 8	$[9.10 ext{E-06} \cdot (141.5 - 12 - 12) + 9.10 ext{E-06} \cdot (12 + 12)] =$	-0.045846
New or Corr	LC1, 2, 3, 4, 5, 6, 7, 8	$\omega_s = 1.0343266 \cdot 21{,}241.68 \cdot 0.648318 \cdot 7{.}233889 ext{E-05} \cdot (1+1.25 \cdot 0.648318) =$	1.8654
New or Corr			-1.6228
New or Corr	All LCs	$\omega_c = 1.0660087 \cdot 0.0 \cdot 0.0 \cdot 0 \cdot (1 + 1.25 \cdot 0.0) =$	0
New or Corr	LC1, 2, 3, 4, 5, 6, 7, 8	$\omega_c^* = 20.1218^{-2} \cdot \left[rac{ig(1.0660087^{-2} + 1 ig) \cdot ig(1.0660087 - 1 ig) }{4} - rac{1.0343266 - 1}{2} ight] - 0.0 =$	7.325

$P_W = -$	$-rac{U\gamma_b}{a_o^22\pi}W^*$					
$P_{rim}=-rac{U}{a_o^2}(\omega_s^*P_s-\omega_c^*P_t)$						
$P_e = \frac{1}{1}$	$+JK_{s,t}[Q_{Z_1}]$	$rac{2}{2} rac{2}{2} rac{2}{2} rac{2}{2} rac{2}{2} rac{2}{2} rac{2}{2} \left[P_s' - P_t' + P_\gamma + P_W + P_{rim} ight] + (ho_s - 1) Q_{22} ight]^{-1}$				
		Condition Operating				
New or		$P'_{s} = \left(0.5248666 + 2 \cdot (1 - 0.5248666) \cdot 0.3 + \frac{2}{0.3163852} \cdot \left(\frac{41.625}{40.2436}\right)^{2} \cdot 0.31 - \frac{1.0343266^{-2} - 1}{1.0 \cdot 0.3163852} - \frac{(1 - 1.0) \cdot [0^{2} - 41.625^{-2}]}{2 \cdot 1.0 \cdot 0.3163852 \cdot 40.2436^{-2}}\right) \cdot -15 =$	-40.29			
Corr	LC2, 3, 6, 7	$P'_{s} = \left(0.5248666 + 2 \cdot (1 - 0.5248666) \cdot 0.3 + \frac{2}{0.3163852} \cdot \left(\frac{41.625}{40.2436}\right)^{2} \cdot 0.31 - \frac{1.0343266^{-2} - 1}{1.0 \cdot 0.3163852} - \frac{(1 - 1.0) \cdot [0^{2} - 41.625^{-2}]}{2 \cdot 1.0 \cdot 0.3163852 \cdot 40.2436^{-2}}\right) \cdot 25 =$	67.14			
New or			245.63			
Corr	LC2, 4, 6, 8	$P_t' = \left(0.5849226 + 2 \cdot (1 - 0.5849226) \cdot 0.3 + rac{1}{1.0 \cdot 0.3163852} ight) \cdot \ -15 =$	-59.92			
New or	LC1, 2, 3, 4	$P_{\gamma} = rac{342 \cdot 43,409.98}{\pi \cdot 20.1218^{-2}} \cdot 0.0 =$	0			
Corr	LC5, 6, 7, 8	$P_{\gamma} = rac{342 \cdot 43,409.98}{\pi \cdot 20.1218^{-2}} \cdot - 0.045846 =$	-535.1			
	LC1, 3	$P_W = - rac{60.8276234 \cdot - 0.0537353}{20.1218\ ^2 \cdot 2 \cdot \pi} \cdot 88{,}834.5 =$	114.14			
New or	LC2, 4	$P_W=-rac{60.8276234\cdot-0.0537353}{20.1218^{-2}\cdot 2\cdot\pi}\cdot 0=$	0			
Corr	LC5, 7	$P_W=-rac{60.8276234\cdot-0.0537353}{20.1218^{-2}\cdot2\cdot\pi}\cdot115{,}117{.}25=$	147.91			
	LC6, 8	$P_W=-rac{60.8276234\cdot-0.0537353}{20.1218^{-2}\cdot2\cdot\pi}\cdot82{,}611.01=$	106.14			
	LC1, 5	$P_{rim} = - rac{60.8276234}{20.1218^{-2}} \cdot (-1.6228004 \cdot -15 - 7.3250067 \cdot 61.49) =$	64.01			
New or	LC2, 6	$P_{rim} = - rac{60.8276234}{20.1218^{-2}} \cdot (-1.6228004 \cdot 25 - 7.3250067 \cdot -15) =$	-10.41			
Corr	LC3, 7	$P_{rim} = - rac{60.8276234}{20.1218^{-2}} \cdot (-1.6228004 \cdot 25 - 7.3250067 \cdot 61.49) =$	73.76			
	LC4, 8	$P_{rim} = -\frac{60.8276234}{20.1218^{-2}} \cdot (-1.6228004 \cdot -15 - 7.3250067 \cdot -15) =$	-20.16			

	LC1	$P_e = \frac{1.0 \cdot 0.3163852}{1 + 1.0 \cdot 0.3163852 \cdot [5.7654148 + (1.0343266 - 1) \cdot 30.4138117]} \\ \cdot (-40.2857 - 245.6285 + 0 + 114.1377 + 64.0094) =$	-10.81
	LC2	$P_e = \frac{1.0 \cdot 0.3163852}{1 + 1.0 \cdot 0.3163852 \cdot [5.7654148 + (1.0343266 - 1) \cdot 30.4138117]} \cdot (67.1428 - 59.9201 + 0 + 0 + -10.412) =$	11.7
	LC3	$P_e = \frac{1.0 \cdot 0.3163852}{1 + 1.0 \cdot 0.3163852 \cdot [5.7654148 + (1.0343266 - 1) \cdot 30.4138117]} \\ \cdot (67.1428 - 245.6285 + 0 + 114.1377 + 73.7614) =$	0.94
New or	LC4	$P_e = \frac{1.0 \cdot 0.3163852}{1 + 1.0 \cdot 0.3163852 \cdot [5.7654148 + (1.0343266 - 1) \cdot 30.4138117]} \\ \cdot (-40.285759.9201 + 0 + 0 + -20.164) =$	-0.05
Corr	LC5	$P_e = \frac{1.0 \cdot 0.3163852}{1 + 1.0 \cdot 0.3163852 \cdot [5.7654148 + (1.0343266 - 1) \cdot 30.4138117]} \\ \cdot (-40.2857 - 245.6285 + -535.0991 + 147.9067 + 64.0094) =$	-61.09
	LC6	$P_e = \frac{1.0 \cdot 0.3163852}{1 + 1.0 \cdot 0.3163852 \cdot [5.7654148 + (1.0343266 - 1) \cdot 30.4138117]} \\ \cdot (67.1428 - 59.9201 + -535.0991 + 106.1415 + -10.412) =$	-31.32
	LC7	$P_e = \frac{1.0 \cdot 0.3163852}{1 + 1.0 \cdot 0.3163852 \cdot [5.7654148 + (1.0343266 - 1) \cdot 30.4138117]} \\ \cdot (67.1428 - 245.6285 + -535.0991 + 147.9067 + 73.7614) =$	-49.34
	LC8	$P_e = \frac{1.0 \cdot 0.3163852}{1 + 1.0 \cdot 0.3163852 \cdot [5.7654148 + (1.0343266 - 1) \cdot 30.4138117]} \\ \cdot (-40.285759.9201 + -535.0991 + 106.1415 + -20.164) =$	-43.08

		UHX-13.5.7 Step 7				
$Q_2 = rac{(\omega}{\omega}$	$v_s^* P_s$ -	$rac{-\omega_c^*P_t)+rac{\gamma_b}{2\pi}W^*}{1+\Phi Z_m}$				
$Q_3 = Q_1$	$+\frac{2}{P}$	$\frac{Q_2}{Q_e a_o^2}$				
F_m is cal	lculat	ted per Table UHX-13.1				
$\sigma = \left(\frac{1.5}{2}\right)$	$\sigma = \left(rac{1.5 F_m}{\mu^*} ight) \left(rac{2 a_o}{h-h_g'} ight)^2 P_e$					
If $P_e = 0$	If $P_e = 0, \; \sigma = rac{6Q_2}{\mu^*(h-h_g')^{\;2}}$					
	Condition Operating					
	LC1	$Q_2 = rac{(-1.6228004 \cdot -15 - 7.3250067 \cdot 61.49) + - rac{0.0537353}{2 \cdot \pi} \cdot 88{,}834.5}{1 + 1.284236 \cdot 0.1970454} =$	-946.328			
	LC2	$Q_2 = rac{(-1.6228004 \cdot 25 - 7.3250067 \cdot -15) + - rac{0.0537353}{2 \cdot \pi} \cdot 0}{1 + 1.284236 \cdot 0.1970454} =$	55.309			

	LC3	$Q_2=rac{(-1.6228004\cdot 25-7.3250067\cdot 61.49)+-rac{0.05373}{2\cdot \pi}}{1+1.284236\cdot 0.1970454}$	$\frac{153}{2} \cdot 88,834.$	5=	-998.1311
New or	LC4	$Q_2 = rac{(-1.6228004 \cdot -15 - 7.3250067 \cdot -15) + -15}{1 + 1.284236 \cdot 0.1970454}$	$\frac{0.0537353}{2\cdot\pi}$	0 =	107.1121
Corr	LC5	$Q_2=rac{(-1.6228004\cdot-15-7.3250067\cdot61.49)+-rac{0.0537353}{2\cdot\pi}\cdot}{1+1.284236\cdot0.1970454}$	115,117.25	<u> </u>	-1,125.711
	LC6	$Q_2 = rac{(-1.6228004\cdot 25 - 7.3250067\cdot -15) + - rac{0.0537353}{2\cdot \pi}}{1+1.284236\cdot 0.1970454}$	$\frac{3}{2} \cdot 82,\!611.0$	1=	-508.5211
	LC7	$Q_2 = rac{(-1.6228004 \cdot 25 - 7.3250067 \cdot 61.49) + - rac{0.0537353}{2 \cdot \pi}}{1 + 1.284236 \cdot 0.1970454}$	· 115,117.2	5 =	-1,177.514
	LC8	$Q_2 = rac{(-1.6228004 \cdot -15 - 7.3250067 \cdot -15) + - rac{0.0537353}{2 \cdot \pi}}{1 + 1.284236 \cdot 0.1970454}$	· 82,611.01	L =	-456.718
	LC1	$Q_3 = 0.0082552 +$	$2 \cdot -946.$ 10.809 · 20	$\frac{328}{.1218^{-2}} =$	0.4407225
	LC2	$Q_3 = 0.0082552$	$+ \frac{2 \cdot 55}{11.7 \cdot 20}$	$\frac{5.309}{0.1218^{-2}} =$	0.0316062
	LC3	$Q_3 = 0.0082552 + rac{2 \cdot - 998.1311}{0.9442 \cdot 20.1218^{-2}} =$			
New or	LC4	$Q_3 = 0.0082552 + rac{2 \cdot 107.1121}{-0.0531 \cdot 20.1218 \ ^2} =$			
Corr	LC5	$Q_3 = 0.0082552 + rac{2}{-6}$	$2 \cdot -1,125$ $1.0922 \cdot 20$	$\frac{.711}{.1218^{-2}} =$	0.0992754
	LC6	$Q_3 = 0.0082552 + rac{2 \cdot -508.5211}{-31.3243 \cdot 20.1218 \ ^2} =$		0.0884461	
	LC7	$Q_3 = 0.0082552 + rac{2}{-4}$	$2 \cdot -1,177$ 9.3391 $\cdot 20$	$\frac{514}{.1218^2} =$	0.1261439
	LC8	$Q_3 = 0.0082552 + rac{-4}{-4}$	$2 \cdot -456.2$ $3.0774 \cdot 20$	$\frac{718}{.1218^2} =$	0.0606268
		Tubesheet Bending Stress	Stress (psi)	Allowable (psi)	Over- stressed?
	LC1	$\sigma = \left(rac{1.5 \cdot 0.2325361}{0.2474622} ight) \cdot \left(rac{2 \cdot 20.1218}{1.25 - 0} ight)^2 \cdot -10.809 =$	-15,792	39,300	No
	LC2	$\sigma = \left(rac{1.5 \cdot 0.0439166}{0.2474622} ight) \cdot \left(rac{2 \cdot 20.1218}{1.25 - 0} ight)^2 \cdot 11.7 =$	3,228	39,300	No
	LC3	$\sigma = \left(rac{1.5 \cdot 2.6086896}{0.2474622} ight) \cdot \left(rac{2 \cdot 20.1218}{1.25 - 0} ight)^2 \cdot 0.9442 =$	15,475	39,300	No
New or	LC4	$\sigma = \left(rac{1.5 \cdot 4.9847157}{0.2474622} ight) \cdot \left(rac{2 \cdot 20.1218}{1.25 - 0} ight)^2 \cdot -0.0531 =$	-1,663	39,300	No

Corr	LC5	$\sigma = \left(rac{1.5 \cdot 0.0715178}{0.2474622} ight) \cdot \left(rac{2 \cdot 20.1218}{1.25 - 0} ight)^2 \cdot - 61.0922 =$	-27,451	107,400	No
	LC6	$\sigma = \left(rac{1.5 \cdot 0.0668957}{0.2474622} ight) \cdot \left(rac{2 \cdot 20.1218}{1.25 - 0} ight)^2 \cdot - 31.3243 =$	-13,165	107,400	No
	LC7	$\sigma = \left(rac{1.5 \cdot 0.0832948}{0.2474622} ight) \cdot \left(rac{2 \cdot 20.1218}{1.25 - 0} ight)^2 \cdot -49.3391 =$	-25,821	107,400	No
	LC8	$\sigma = \left(\frac{1.5 \cdot 0.0552905}{0.2474622}\right) \cdot \left(\frac{2 \cdot 20.1218}{1.25 - 0}\right)^2 \cdot -43.0774 =$	-14,964	107,400	No

	UHX-13.5.8 Step 8					
$ au = \left(\frac{1}{4}\right)$	$\left(\frac{1}{\mu}\right)\left($	$\left(\frac{1}{h}\left\{\frac{4A_p}{C_p} ight\} ight) P_e $	for $ P_e > rac{1.6 S \mu h}{a_o}$			
		Condition Operating				
				Shear Calc Required		
	LC1	$ -10.809 \leq rac{1.6 \cdot 26,200 \cdot 0.2 \cdot 1.25}{20.1218} =$	521	No		
	LC2	$ 11.7 \leq rac{1.6 \cdot 26,200 \cdot 0.2 \cdot 1.25}{20.1218} =$	521	No		
	LC3	$ 0.9442 \leq rac{1.6 \cdot 26,200 \cdot 0.2 \cdot 1.25}{20.1218} =$	521	No		
New or	LC4	$ -0.0531 \leq rac{1.6 \cdot 26,200 \cdot 0.2 \cdot 1.25}{20.1218} =$	521	No		
Corr	LC5	$ -61.0922 \leq rac{1.6 \cdot 26,200 \cdot 0.2 \cdot 1.25}{20.1218} =$	521	No		
	LC6	$ -31.3243 \leq rac{1.6 \cdot 26,200 \cdot 0.2 \cdot 1.25}{20.1218} =$	521	No		
	LC7	$ -49.3391 \leq rac{1.6 \cdot 26,200 \cdot 0.2 \cdot 1.25}{20.1218} =$	521	No		
	LC8	$ -43.0774 \le rac{1.6 \cdot 26,200 \cdot 0.2 \cdot 1.25}{20.1218} =$	521	No		

UHX-13.5.9 Step 9

$$egin{aligned} F_t(x) &= [Z_d(x) + Q_3 Z_w(x)] rac{X_a^4}{2} \ \end{aligned}$$
 If $P_e &= 0, \ F_t(x) = Z_w(x) rac{X_a^4}{2} \end{aligned}$

 $F_{t,\min} = \min \left[F_t(x)
ight]$

 $F_{t,\max} = \max \left[F_t(x)
ight]$

 $F_{s} = {
m max} \left[ig(3.25 - 0.25 (Z_{d} + Q_{3} Z_{w}) X_{a}^{4} ig), 1.25
ight] {
m but not greater than } 2$

If $P_e =$	If $P_e = 0, \ F_s = 1.25$					
$\sigma_{t,1} = \frac{1}{2}$	$\sigma_{t,1} = rac{1}{x_t - x_s} \left[(P_s x_s - P_t x_t) - P_e F_{t,\min} ight]$					
$\sigma_{t,2} = rac{1}{2}$	$rac{1}{x_t-x_s} \left[(P_s x_s - P_t x_t ight.$	$)-P_eF_{t,\max}]$				
If $P_e =$	$=0, \sigma_{t,1}=rac{1}{x_t-x_s} \left[-rac{1}{x_t-x_t-x_s} \left[-rac{1}{x_t-x_s} \left[-rac{1}{x$	$\left(P_s x_s - P_t x_t ight) - rac{2Q_2}{a_o^2} F_{t,\min} ight]$				
If $P_e =$	$=0, \sigma_{t,2}=rac{1}{x_t-x_s} \left[-rac{1}{x_t-x$	$(P_s x_s - P_t x_t) - rac{2Q_2}{a_o^2} F_{t, ext{max}} igg]$				
$l_t = kl$						
$r_t = $	$\overline{\left(d_t^2 + \left(d_t - 2t_t ight)^2 ight)^2} ight. } $					
$F_t = rac{l_t}{r_t}$;					
$C_t = $	$\frac{\sqrt{2\pi^2 E_t}}{S_{y,t}}$					
For C_t	$\leq F_t, \; S_{tb} = \min \left\{ \cdot \right.$	$\left. \left. \frac{\pi^2 E_t}{F_s F_t^2}, S_t \right\} ight\}$				
For C_t	$>F_t, \; S_{tb} \; = \; \min \left\{ \cdot \right.$	$rac{S_{y,t}}{F_s}igg(1-rac{F_t}{2C_t}igg),S_t\Big\}$				
$\sigma_{t,\max} =$	$= \max \left[\sigma_{t,1} , \sigma_{t,2} \right]$					
$\sigma_{t,\min} =$	$=\min\left[\sigma_{t,1},\sigma_{t,2}\right]$					
		Condition Operating				
	LC1	$F_{t,\min} = [-0.000213 + 0.4407225 \cdot -0.0050744] \cdot rac{7.3985286^{-4}}{2} =$	-3.6695			
	LC2	$F_{t,\min} = \left[-0.0003557 + 0.0316062 \cdot \ -0.0039245 ight] \cdot rac{7.3985286^{-4}}{2} =$	-0.7188			
	LC3	$F_{t,\min} = [0.0036942 + -5.2137614 \cdot 0.0186744] \cdot rac{7.3985286^{-4}}{2} =$	-140.3302			
New or	LC4	$F_{t,\min} = [0.0036942 + -9.9540082 \cdot 0.0186744] \cdot rac{7.3985286^{-4}}{2} =$	-272.9475			
Corr	LC5	$F_{t,\min} = \left[-0.0003198 + 0.0992754 \cdot \ -0.004529 ight] \cdot rac{7.3985286^{-4}}{2} =$	-1.1527			
	LC6	$F_{t,\min} = [-0.0003324 + 0.0884461\cdot-0.0043876]\cdotrac{7.3985286^{-4}}{2} =$	-1.0793			
	LC7	$F_{t,\min} = \left[-0.0003045 + 0.1261439 \cdot \ -0.0046616 ight] \cdot rac{7.3985286^{-4}}{2} =$	-1.3372			

	LC8	$F_{t,\min} = \left[-0.0003424 + 0.0606268 \cdot \ -0.0042389 ight] \cdot rac{7.3985286^{-4}}{2} =$	-0.898
	LC1	$F_{t,\max} = [0.0036942 + 0.4407225 \cdot 0.0186744] \cdot rac{7.3985286^{-4}}{2} =$	17.8645
	LC2	$F_{t,\max} = [0.0036942 + 0.0316062 \cdot 0.0186744] \cdot rac{7.3985286^{-4}}{2} =$	6.4187
	LC3	$F_{t, ext{max}} = [-0.000063 + -5.2137614 \cdot -0.0052141] \cdot rac{7.3985286^{-4}}{2} =$	40.6316
New or	LC4	$F_{t, ext{max}} = [-0.000063 + -9.9540082 \cdot -0.0052141] \cdot rac{7.3985286^{-4}}{2} =$	77.6594
Corr	LC5	$F_{t,\max} = [0.0036942 + 0.0992754 \cdot 0.0186744] \cdot rac{7.3985286^{-4}}{2} =$	8.3119
	LC6	$F_{t, ext{max}} = [0.0036942 + 0.0884461 \cdot 0.0186744] \cdot rac{7.3985286^{-4}}{2} =$	8.0089
	LC7	$F_{t,\max} = [0.0036942 + 0.1261439 \cdot 0.0186744] \cdot rac{7.3985286^{-4}}{2} =$	9.0636
	LC8	$F_{t,\max} = [0.0036942 + 0.0606268 \cdot 0.0186744] \cdot rac{7.3985286^{-4}}{2} =$	7.2306
	LC1	$\sigma_{t,1} = \frac{1}{0.5849226 - 0.5248666} \cdot \left[(-15 \cdot 0.5248666 - 61.49 \cdot 0.5849226)10.809 \cdot -3.6695 \right] =$	-1,390
	LC2	$\sigma_{t,1} = \frac{1}{0.5849226 - 0.5248666} \cdot \left[(25 \cdot 0.524866615 \cdot 0.5849226) - 11.7 \cdot -0.7188 \right] =$	505
	LC3	$\sigma_{t,1} = \frac{1}{0.5849226 - 0.5248666} \cdot \left[(25 \cdot 0.5248666 - 61.49 \cdot 0.5849226) - 0.9442 \cdot -140.3302 \right] =$	1,826
New or	LC4	$\sigma_{t,1} = \frac{1}{0.5849226 - 0.5248666} \cdot \left[(-15 \cdot 0.524866615 \cdot 0.5849226)0.0531 \cdot -272.9475 \right] = 0.5849226 - 0.5248666 - 0.52486666 - 0.52486666 - 0.52486666 - 0.52486666 - 0.5248666 - 0.5248$	-226
Corr	LC5	$\sigma_{t,1} = \frac{1}{0.5849226 - 0.5248666} \cdot \left[(-15 \cdot 0.5248666 - 61.49 \cdot 0.5849226)61.0922 \cdot -1.1527 \right] = 0.5849226 - 0.5248666 - 0.5248666 - 0.524866 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.524866 - 0.5248666 - 0.524866 - 0.524866 - 0.5248666 - 0.524866 - 0.524866 - 0.524866 - 0.524866 - 0.$	-1,903
	LC6	$\sigma_{t,1} = \frac{1}{0.5849226 - 0.5248666} \cdot \left[(25 \cdot 0.524866615 \cdot 0.5849226)31.3243 \cdot -1.0793 \right] = 0.5849226 - 0.5248666 - 0.52486666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.52666 - 0.526666 - 0.526666 - 0.526666 - 0.5266666 - 0.526666 - 0.526666 - 0.5266666 - 0.5266666 - 0.526666666 - 0.52666666666666666666666666666666666666$	-198
	LC7	$\sigma_{t,1} = \frac{1}{0.5849226 - 0.5248666} \cdot \left[(25 \cdot 0.5248666 - 61.49 \cdot 0.5849226)49.3391 \cdot -1.3372 \right] = 0.5849226 - 0.5248666 - 0.5248666 - 0.524866 - 0.5248666 - 0.5248666 - 0.5248666 - 0.5248666 - 0.524866$	-1,479
	LC8	$\sigma_{t,1} = rac{1}{0.5849226 - 0.5248666} \cdot \left[(-15 \cdot 0.524866615 \cdot 0.5849226)43.0774 \cdot -0.898 ight] =$	-629
	LC1	$\sigma_{t,2} = \frac{1}{0.5849226 - 0.5248666} \cdot \left[(-15 \cdot 0.5248666 - 61.49 \cdot 0.5849226)10.809 \cdot 17.8645 \right] =$	
	LC2	$\sigma_{t,2} = \frac{1}{0.5849226 - 0.5248666} \cdot \left[(25 \cdot 0.524866615 \cdot 0.5849226) - 11.7 \cdot 6.4187 \right] =$	-886
	LC3	$\sigma_{t,2} = \frac{1}{0.5849226 - 0.5248666} \cdot \left[(25 \cdot 0.5248666 - 61.49 \cdot 0.5849226) - 0.9442 \cdot 40.6316 \right] =$	-1,019

New or	LC4	$\sigma_{t,2} = rac{1}{0.5849226 - 0.5248666} \cdot [(-15 \cdot 0.524866615$	· 0.5849226) – ·	$-0.0531 \cdot 77.6594] =$	84			
Corr	LC5	$\sigma_{t,2} = rac{1}{0.5849226 - 0.5248666} \cdot [(-15 \cdot 0.5248666 - 61.49)]$	$\cdot 0.5849226) - \cdot$	$- 61.0922 \cdot 8.3119] =$	7,725			
	LC6	$\sigma_{t,2} = rac{1}{0.5849226 - 0.5248666} \cdot \left[(25 \cdot 0.524866615) ight]$	· 0.5849226) —	$-31.3243 \cdot 8.0089] =$	4,542			
	LC7	$\sigma_{t,2} = rac{1}{0.5849226 - 0.5248666} \cdot \left[(25 \cdot 0.5248666 - 61.49 + 0.5248666) + 0.5248666 - 61.49 + 0.5248666 + 0.524866 + 0.5248666 + 0.5248666 + 0.5248666 + 0.5248666 + 0.524866 + 0.5248666 + 0.528666 + 0.528666 + 0.528666 + 0.528666 + 0.528666 + 0.528666 + 0.528666 + 0.528666 + 0.528666 + 0.528666 + 0.528666 + 0.5286666 + 0.5286666 + 0.5286666 + 0.52866666666 + 0.528$	· 0.5849226) — -	$-49.3391 \cdot 9.0636] =$	7,066			
	LC8	$\sigma_{t,2} = rac{1}{0.5849226 - 0.5248666} \cdot \left[(-15 \cdot 0.524866615 + 0.5248666) - 15 + 0.524866615 + 0.524866615 + 0.5248666 + 0.528666 + 0.5286666 + 0.5286666 + 0.5286666 + 0.5286666 + 0.5286666 + 0.52866666 + 0.528666666666666666666666666666666666666$	· 0.5849226) — -	$-43.0774 \cdot 7.2306] =$	5,201			
New or Corr	LC1, 2, 3, 4, 5, 6, 7, 8	r	$t_{t} = \frac{\sqrt{1.5^{2} + (1-1)^{2}}}{1-1}$	$\overline{\frac{.5 - 2 \cdot 0.049)}{4}}^2 =$	0.5133			
New or Corr	LC1, 2, 3, 4, 5, 6, 7, 8			$F_t = {97.6 \over 0.5133} =$	190.1428			
New or Corr	LC1, 2, 3, 4, 5, 6, 7, 8		$C_t = \sqrt{rac{2}{2}}$	$\frac{\cdot \pi^2 \cdot 27.5 \text{E} + 06}{57,900} =$	96.826			
New or	LC1, 2, 5, 6, 7, 8	$F_s = \min ig \max ig [(3.25 - 0.25 \cdot (0.0036942 + 0.4407225 \cdot 0.440725 \cdot 0.4407225 \cdot 0.440725 \cdot $	0.0186744) · 7.398	$85286 \ ^4 ig), 1.25 ig], 2 ig\} =$	1.25			
Corr	LC3, 4	$F_s = \min \left\{ \max \left[\left(3.25 - 0.25 \cdot (0.0036942 + -5.2137614 \cdot 0.0036942 + -5.203864 \cdot 0.00366 + -5.20386 \cdot 0.00386 + -5.20386 \cdot 0.00386 + -5.20386 \cdot 0.00386 + -5.20386 + -5.20386 \cdot 0.00386 + -5.20386 \cdot 0.00386 + -5.20386 \cdot 0.00386 + -5.20386 + -5.20386 \cdot 0.00386 + -5.20386 +$	$F_s = \min \left\{ \max \left[\left(3.25 - 0.25 \cdot (0.0036942 + -5.2137614 \cdot 0.0186744) \cdot 7.3985286 \ ^4 ight), 1.25 ight], 2 ight\} = 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$					
New or	LC1, 2, 5, 6, 7, 8	$S_{tb} \ = \ \min \left\{ rac{\pi^2 \cdot 27.5 \mathrm{E} + 06}{1.25 \cdot 190.1428^{-2}} \ = 6,006,26,235 ight\} =$						
Corr	LC3, 4	$S_{tb} = \min \left\{ \frac{1}{2} \right\}$	$\frac{\pi^2 \cdot 27.5 \text{E} + 06}{2 \cdot 190.1428^{-2}}$	$=3,754,26,235\Big\}=$	3,754			
		Tube Evaluation	Stress (psi)	Allowable (psi)	Over- stressed?			
	LC1	$\sigma_{t,{ m max}}={ m max}\left[\left -1,\!390 ight , \left 2,\!485 ight ight] =$	2,485	26,235	No			
	LC2	$\sigma_{t,{ m max}}={ m max}\;[505 , { m -886}]=$	886	26,235	No			
	LC3	$\sigma_{t,{ m max}}={ m max}\;[1,\!826 , -\!1,\!019\;]=$	1,826	26,235	No			
New or	LC4	$\sigma_{t,{ m max}} = { m max} \; [-226 , 84] =$	226	26,235	No			
Corr	LC5	$\sigma_{t,{ m max}}={ m max}\left[\left -1,\!903 ight , \left 7,\!725 ight ight] =$	7,725	52,471	No			
	LC6	$\sigma_{t,{ m max}}={ m max}\left[-198 , 4{ m ,}542 ight]=$	4,542	52,471	No			
	LC7	$\sigma_{t,{ m max}}={ m max}\left[\left -1,\!479 ight , \left 7,\!066 ight ight] =$	7,066	52,471	No			
	LC8	$\sigma_{t, ext{max}} = ext{ max } \left[-629 , 5,\!201 ight] =$	5,201	52,471	No			
	LC1	$\sigma_{t,{ m min}}=~{ m min}~[-1,390,2,\!485]=$	-1,390	6,006	No			
	LC2	$\sigma_{t,{ m min}}={ m min}\;[505,-886]=$	-886	6,006	No			
	LC3	$\sigma_{t,\min} = \min \left[1,826, -1,\!019 ight] =$	-1,019	3,754	No			

New or	LC4	$\sigma_{t,\min}=~\min~[-226,84]=$	-226	3,754	No
Corr	LC5	$\sigma_{t,\min} = \min \left[-1,903,7,725 ight] =$	-1,903	6,006	No
	LC6	$\sigma_{t,\min} = \min \left[-198, 4{,}542 ight] =$	-198	6,006	No
	LC7	$\sigma_{t,\min} = \min \left[-1,479,7,\!066 ight] =$	-1,479	6,006	No
	LC8	$\sigma_{t,\min} = \min \; [-629,5,\!201] =$	-629	6,006	No

IIHX-1	3.5.10	Sten	10
	0.0.10	Otop	

$$\sigma_{s,m} = rac{a_o^2}{t_s(D_s+t_s)} ig[P_e + ig(
ho_s^2 -1 ig) (P_s - P_t) ig] + rac{a_s^2}{t_s(D_s+t_s)} P_t$$

Condition Operating										
		Shell Evaluation	Stress (psi)	S _s *E _{s,w} (psi)	S _{PS,s} (psi)	S _{s,b} (psi)	Over- stressed?			
	LC1	$\sigma_{s,m} = rac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot \left[-10.809 + (1.0343266^{-2} - 1) \cdot (-15 - 61.49) ight] + rac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot 61.49 =$	2,565	13,230	N/A	N/A	No			
	LC2	$\sigma_{s,m} = rac{20.1218\ ^2}{0.1874\cdot(41.625+0.1874)} \cdot \left[11.7+\left(1.0343266\ ^2-1 ight) \cdot \left(25-15 ight) ight] + rac{20.8125\ ^2}{0.1874\cdot(41.625+0.1874)} \cdot -15 =$	-80	13,230	N/A	7,619	No			
	LC3	$\sigma_{s,m} = rac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot \left[0.9442 + (1.0343266^{-2} - 1) \cdot (25 - 61.49) ight] + rac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot 61.49 =$	3,316	13,230	N/A	N/A	No			
New or	LC4	$\sigma_{s,m} = \frac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot \left[-0.0531 + (1.0343266^{-2} - 1) \cdot (-1515) \right] + \frac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot -15 =$	-832	13,230	N/A	7,619	No			
Corr	LC5	$\sigma_{s,m} = rac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot \left[-61.0922 + (1.0343266^{-2} - 1) \cdot (-15 - 61.49) ight] + rac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot 61.49 =$	-34	N/A	56,700	7,619	No			
	LC6	$\sigma_{s,m} = \frac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot \left[-31.3243 + (1.0343266^{-2} - 1) \cdot (2515) \right] + \frac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot -15 =$	-2,303	N/A	56,700	7,619	No			
	LC7	$\sigma_{s,m} = \frac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot \left[-49.3391 + (1.0343266^{-2} - 1) \cdot (25 - 61.49) \right] + \frac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot 61.49 =$	718	N/A	56,700	N/A	No			

	LC8	$\sigma_{s,m} = \frac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot \left[-43.0774 + (1.0343266^{-2} - 1) \cdot (-1515) \right] + \frac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot -15 =$	-3,055	N/A	56,700	7,619	No
		Shell Band Evaluation	Stress (psi)	S _{s,1} *E _{s,w} (psi)	S _{PS,s,1} (psi)	S _{s,b,1} (psi)	Over- stressed?
	LC1	$\sigma_{s,m} = rac{20.1218}{0.1874 \cdot (41.625 + 0.1874)} \cdot \left[-10.809 + (1.0343266^{-2} - 1) \cdot (-15 - 61.49) ight] + rac{20.8125}{0.1874 \cdot (41.625 + 0.1874)} \cdot 61.49 =$	2,565	13,230	N/A	N/A	No
	LC2	$\sigma_{s,m} = rac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot \left[11.7 + (1.0343266^{-2} - 1) \cdot (2515) ight] + rac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot -15 =$	-80	13,230	N/A	7,619	No
	LC3	$\sigma_{s,m} = rac{20.1218}{0.1874 \cdot (41.625 + 0.1874)} \cdot ig[0.9442 + ig(1.0343266^{-2} - 1 ig) \cdot ig(25 - 61.49 ig) ig] + rac{20.8125}{0.1874 \cdot (41.625 + 0.1874)} \cdot 61.49 =$	3,316	13,230	N/A	N/A	No
New or	LC4	$\sigma_{s,m} = rac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot \left[-0.0531 + (1.0343266^{-2} - 1) \cdot (-1515) ight] + rac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot -15 =$	-832	13,230	N/A	7,619	No
Corr	LC5	$\sigma_{s,m} = \frac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot \left[-61.0922 + (1.0343266^{-2} - 1) \cdot (-15 - 61.49) \right] + \frac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot 61.49 =$	-34	N/A	56,700	7,619	No
	LC6	$\sigma_{s,m} = \frac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot \left[-31.3243 + (1.0343266^{-2} - 1) \cdot (2515) \right] + \frac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot -15 =$	-2,303	N/A	56,700	7,619	No
	LC7	$\sigma_{s,m} = rac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot \left[-49.3391 + (1.0343266^{-2} - 1) \cdot (25 - 61.49) ight] + rac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot 61.49 =$	718	N/A	56,700	N/A	No
	LC8	$\sigma_{s,m} = \frac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot \left[-43.0774 + (1.0343266^{-2} - 1) \cdot (-1515) \right] + \frac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot -15 =$	-3,055	N/A	56,700	7,619	No

UHX-13.5.11 Step 11

$$\sigma_{s,m} = rac{a_o^2}{t_{s,1}(D_s+t_{s,1})} \left[P_e + \left(
ho_s^2 - 1
ight)(P_s - P_t)
ight] + rac{a_s^2}{t_{s,1}(D_s+t_{s,1})} P_t$$

91/214

$$\sigma_{s,b} = \frac{6}{t_{s,1}^2} k_s \Biggl\{ \beta_s \delta_s P_s + \frac{6(1-\nu^{*2})}{E^*} \bigg(\frac{a_o^3}{h^3} \bigg) \bigg(1 + \frac{h\beta_s}{2} \bigg) \Biggl[P_e \left(Z_v + Z_m Q_1 \right) + \frac{2Z_m Q_2}{a_o^2} \Biggr] \Biggr\}$$

 $\sigma_s = |\sigma_{s,m}| + |\sigma_{s,b}|$

Condition Operating

 $\mbox{Minimum shell length} \quad = 1.8 \cdot \sqrt{D_s \cdot t_{s,1}} \ = 5.0273 \ \mbox{ in where thickness } \ t_{s,1} = 0.1874 \ \ \mbox{in}$

	Shell Band Evaluation	Stress (psi)	1.5*S _s (psi)	S _{PS,s} (psi)	Over- stressed वि
	$\sigma_{s,m} = \frac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot \left(-10.809 + (1.0343266^{-2} - 1) \cdot (-15 - 61.49)\right) + \frac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot 61.49 =$				
LC1	$\begin{aligned} \sigma_{s,b} &= \frac{6}{0.1874^{-2}} \cdot 21,\!241.68 \cdot \left(0.648318 \cdot 7.233889\text{E-}05 \cdot -15 + \\ &\frac{6 \cdot \left(1 - 0.3089124^{-2}\right)}{7,098,105} \cdot \left(\frac{20.1218^{-3}}{1.25^{-3}}\right) \cdot \left(1 + \frac{1.25 \cdot 0.648318}{2}\right) \cdot \\ &\left(-10.809 \cdot \left(0.0186744 + 0.1970454 \cdot 0.0082552\right) + \frac{2 \cdot 0.1970454 \cdot -946.328}{20.1218^{-2}}\right)\right) = \end{aligned}$	-21,104	28,350	56,700	No
	$\sigma_s = 2{,}565 + -21{,}104 =$	23,669			
	$\sigma_{s,m} = rac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot \left(11.7 + \left(1.0343266^{-2} - 1 ight) \cdot (2515) ight) + rac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot -15 =$	-80			
LC2	$\begin{aligned} \sigma_{s,b} &= \frac{6}{0.1874^{-2}} \cdot 21,241.68 \cdot \left(0.648318 \cdot 7.233889\text{E-05} \cdot 25 + \right. \\ &\left. \frac{6 \cdot \left(1 - 0.3089124^{-2}\right)}{7,098,105} \cdot \left(\frac{20.1218^{-3}}{1.25^{-3}}\right) \cdot \left(1 + \frac{1.25 \cdot 0.648318}{2}\right) \cdot \left. \left(11.7 \cdot \left(0.0186744 + 0.1970454 \cdot 0.0082552\right) + \frac{2 \cdot 0.1970454 \cdot 55.309}{20.1218^{-2}}\right) \right) = \end{aligned}$	8,994	28,350	56,700	No
	$\sigma_s = -80 + 8,\!994 =$	9,074			
	$\sigma_{s,m} = rac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot ig(0.9442 + ig(1.0343266^{-2} - 1 ig) \cdot (25 - 61.49) ig) + rac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot 61.49 =$	3,316			
LC3	$\begin{aligned} \sigma_{s,b} = & \frac{6}{0.1874^{-2}} \cdot 21,241.68 \cdot \left(0.648318 \cdot 7.233889\text{E-05} \cdot 25 + \\ & \frac{6 \cdot \left(1 - 0.3089124^{-2}\right)}{7,098,105} \cdot \left(\frac{20.1218^{-3}}{1.25^{-3}}\right) \cdot \left(1 + \frac{1.25 \cdot 0.648318}{2}\right) \cdot \\ & \left(0.9442 \cdot \left(0.0186744 + 0.1970454 \cdot 0.0082552\right) + \frac{2 \cdot 0.1970454 \cdot - 998.1311}{20.1218^{-2}}\right) \right) = \end{aligned}$	-11,235	28,350	56,700	No
	$\sigma_s = 3,\!316 + -\!11,\!235 =$	14,551			

		$\sigma_{s,m} = rac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot ig(- 0.0531 + ig(1.0343266^{-2} - 1 ig) \cdot ig(- 1515 ig) ig) + rac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot -15 =$	-832			
	LC4	$\begin{split} \sigma_{s,b} &= \frac{6}{0.1874^{-2}} \cdot 21,241.68 \cdot \left(0.648318 \cdot 7.233889 \text{E-}05 \cdot -15 + \\ &\frac{6 \cdot \left(1 - 0.3089124^{-2}\right)}{7,098,105} \cdot \left(\frac{20.1218^{-3}}{1.25^{-3}}\right) \cdot \left(1 + \frac{1.25 \cdot 0.648318}{2}\right) \cdot \\ &\left(-0.0531 \cdot \left(0.0186744 + 0.1970454 \cdot 0.0082552\right) + \frac{2 \cdot 0.1970454 \cdot 107.1121}{20.1218^{-2}}\right)\right) = \end{split}$	-875	28,350	56,700	No
New or		$\sigma_s = {-832} + {-875} =$	1,707			
Corr		$\sigma_{s,m} = rac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot \left(-61.0922 + (1.0343266^{-2} - 1) \cdot (-15 - 61.49) ight) + rac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot 61.49 =$	-34			
	LC5	$\begin{aligned} \sigma_{s,b} &= \frac{6}{0.1874^{-2}} \cdot 21,\!241.68 \cdot \left(0.648318 \cdot 7.233889 \text{E-}05 \cdot -15 + \\ &\frac{6 \cdot \left(1 - 0.3089124^{-2}\right)}{7,098,105} \cdot \left(\frac{20.1218^{-3}}{1.25^{-3}}\right) \cdot \left(1 + \frac{1.25 \cdot 0.648318}{2}\right) \cdot \\ &\left(-61.0922 \cdot \left(0.0186744 + 0.1970454 \cdot 0.0082552\right) + \frac{2 \cdot 0.1970454 \cdot -1,\!125.711}{20.1218^{-2}}\right)\right) = \end{aligned}$	-40,548	N/A	56,700	No
		$\sigma_s = -34 + -40,\!548 =$	40,581			
		$\sigma_{s,m} = rac{20.1218\ ^2}{0.1874\cdot(41.625+0.1874)}\cdotig(-31.3243+ig(1.0343266\ ^2-1ig)\cdot(2515)ig)+ rac{20.8125\ ^2}{0.1874\cdot(41.625+0.1874)}\cdot-15=$	-2,303			
	LC6	$\begin{aligned} \sigma_{s,b} &= \frac{6}{0.1874^{-2}} \cdot 21,241.68 \cdot \left(0.648318 \cdot 7.233889\text{E-05} \cdot 25 + \\ &\frac{6 \cdot \left(1 - 0.3089124^{-2}\right)}{7,098,105} \cdot \left(\frac{20.1218^{-3}}{1.25^{-3}}\right) \cdot \left(1 + \frac{1.25 \cdot 0.648318}{2}\right) \cdot \\ &\left(-31.3243 \cdot \left(0.0186744 + 0.1970454 \cdot 0.0082552\right) + \frac{2 \cdot 0.1970454 \cdot -508.5211}{20.1218^{-2}}\right)\right) = \end{aligned}$	-14,139	N/A	56,700	No
		$\sigma_{s} = \mid$ -2,303 \mid + \mid -14,139 \mid =	16,443			
		$\sigma_{s,m} = rac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot \left(-49.3391 + (1.0343266^{-2} - 1) \cdot (25 - 61.49) ight) + rac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot 61.49 =$	718			
	LC7	$\sigma_{s,b} = \frac{6}{0.1874^{-2}} \cdot 21,241.68 \cdot (0.648318 \cdot 7.233889\text{E-05} \cdot 25 + \frac{6 \cdot (1 - 0.3089124^{-2})}{7,098,105} \cdot \left(\frac{20.1218^{-3}}{1.25^{-3}}\right) \cdot \left(1 + \frac{1.25 \cdot 0.648318}{2}\right) \cdot \left(-49.3391 \cdot (0.0186744 + 0.1970454 \cdot 0.0082552) + \frac{2 \cdot 0.1970454 \cdot -1,177.514}{20.1218^{-2}}\right)\right) = 0.0000000000000000000000000000000000$	-30,679	N/A	56,700	No

		$\sigma_s = 718 + -30,\!679 =$	31,397			
		$\sigma_{s,m} = \frac{20.1218^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot (-43.0774 + (1.0343266^{-2} - 1) \cdot (-1515)) + \frac{20.8125^{-2}}{0.1874 \cdot (41.625 + 0.1874)} \cdot -15 =$	-3,055			
	LC8	$\begin{aligned} \sigma_{s,b} &= \frac{6}{0.1874^{-2}} \cdot 21,241.68 \cdot \left(0.648318 \cdot 7.233889 \text{E-05} \cdot -15 + \\ &\frac{6 \cdot \left(1 - 0.3089124^{-2}\right)}{7,098,105} \cdot \left(\frac{20.1218^{-3}}{1.25^{-3}}\right) \cdot \left(1 + \frac{1.25 \cdot 0.648318}{2}\right) \cdot \\ &\left(-43.0774 \cdot \left(0.0186744 + 0.1970454 \cdot 0.0082552\right) + \frac{2 \cdot 0.1970454 \cdot -456.718}{20.1218^{-2}}\right)\right) = \end{aligned}$	-24,008	N/A	56,700	No
		$\sigma_{s} = \mid -3,\!055 \mid + \mid -24,\!008 \mid =$	27,063			

Tube-To-Tubesheet Joint Loads

ASME Tube To Tubesheet Joint Loads - Periphery Of Bundle

$W_j = \sigma_{t,o} A_t$

$L_{\max} = A_t S_a f_r$							
	lb _f						
	Load case 1	$W_j = 2,\!485 \cdot 0.2234 =$	555.1294				
		$L_{ m max} = 0.2234 \cdot 26{,}235 \cdot 0.8 =$	4,688.0182				
	Load case 2	$W_j = 886 \cdot 0.2234 =$	197.8782				
	Load case 2	$L_{\rm max} = 0.2234 \cdot 26{,}235 \cdot 0.8 =$	4,688.0182				
	Load case 3	$W_j = 1,\!826\cdot 0.2234 =$	407.8162				
	Load case 5	$L_{ m max} = 0.2234 \cdot 26{,}235 \cdot 0.8 =$	4,688.0182				
	Load case 4	$W_j = 226 \cdot 0.2234 =$	50.565				
New or corroded		$L_{\rm max} = 0.2234 \cdot 26{,}235 \cdot 0.8 =$	4,688.0182				
New of confided	Load case 5	$W_j = 7{,}725 \cdot 0{.}2234 =$	1,725.5583				
		$L_{ m max} = 0.2234 \cdot 52,\!471 \cdot 0.8 =$	9,376.0364				
		$W_j = 4{,}542 \cdot 0{.}2234 =$	1,014.4977				
	Load Case 0	$L_{ m max} = 0.2234 \cdot 52,\!471 \cdot 0.8 =$	9,376.0364				
	Load case 7	$W_j =$ 7,066 \cdot 0.2234 $=$	1,578.2451				
		$L_{ m max} = 0.2234 \cdot 52,\!471 \cdot 0.8 =$	9,376.0364				
	Load case 8	$W_j = 5{,}201 \cdot 0{.}2234 =$	1,161.8109				
	Load case 8	$L_{ m max} = 0.2234 \cdot 52,\!471 \cdot 0.8 =$	9,376.0364				
$ W_j \le L_{max}$ indic	ates the joint	strength is adequate for the Opera	ting condition.				

ASME Shell Band (front)

ASME Section VIII Division 1, 2019 Edition						
Com	ponent	Cylinder				
Ма	terial	SA	x-240 304 (II-D p. 88,	ln. 37)		
Impact Tested	Impact Tested Normalized		РѠҤТ	Maximize MDMT/ No MAWP		
No	No	No	No	No		
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)		
Int	ernal	25	300	-20		
Ext	ternal	15	300	20		
		Static Liquid	Head			
Cor	dition	P _s (psi)	H _s (in)	SG		
Оре	erating	0.17	4.8125	1		
Test h	orizontal	1.62	44.8125	1		
		Dimensio	ns			
Inner I	Diameter	41.625"				
Le	ngth	12"				
Nominal	Thickness	0.1874"				
Corrosion	Inner		0"			
	Outer		0"			
		Weight and C	apacity			
		Wei	ght (lb)	Capacity (US gal)		
N	lew	8	35.26	39.3		
Cor	roded	8	35.26	39.3		
		Radiograp	ohy			
Longitu	dinal seam	None UW-11(c) Type 1				
Right Circun	nferential seam		None UW-11(c) Typ	e 1		

Results Summary						
Governing condition	External pressure					
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"					
Design thickness due to internal pressure (t)	<u>0.0397"</u>					
Design thickness due to external pressure (t_e)	<u>0.1811"</u>					
Maximum allowable working pressure (MAWP)	<u>118.31 psi</u>					
Maximum allowable pressure (MAP)	<u>125.38 psi</u>					
Maximum allowable external pressure (MAEP)	<u>16.36 psi</u>					
Rated MDMT	-320 °F					

UHA-51 Material Toughness Requirements					
$t_r = rac{86.52 \cdot 20.8125}{20,000 \cdot 0.7 - 0.6 \cdot 86.52} =$	0.1291"				
Stress ratio $= rac{t_r \cdot E^*}{t_n - c} = rac{0.1291 \cdot 0.8}{0.1874 - 0} =$	0.5511				
Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0.10%) = -320°F					
Material is exempt from impact testing at the Design MDMT of -20°F.					

Design thickness, (at 300 °F) UG-27(c)(1)

 $t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{25.17 \cdot 20.8125}{18,900 \cdot 0.70 - 0.60 \cdot 25.17} + 0 = \underline{0.0397}"$

Maximum allowable working pressure, (at 300 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{18,900 \cdot 0.70 \cdot 0.1874}{20.8125 + 0.60 \cdot 0.1874} - 0.17 = \underline{118.31} \text{ psi}$$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{20,000 \cdot 0.70 \cdot 0.1874}{20.8125 + 0.60 \cdot 0.1874} = \underline{125.38} \text{ psi}$$

External Pressure, (Corroded & at 300 °F) UG-28(c)

 $\frac{L}{D_o} = \frac{79.0875}{41.9998} = 1.8830$ $\frac{D_o}{t} = \frac{41.9998}{0.1811} = 231.9293$

From table G: A = 0.000198From table HA-1: B = 2,609.2194 psi

 $P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 2{,}609{.}22}{3 \cdot (41{.}9998/0{.}1811)} = 15 \ \, {\rm psi}$

Design thickness for external pressure $P_a = 15$ psi

 $t_a = t + \text{Corrosion} = 0.1811 + 0 = 0.1811$ "

Maximum Allowable External Pressure, (Corroded & at 300 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{79.0875}{41.9998} = 1.8830$$
$$\frac{D_o}{t} = \frac{41.9998}{0.1874} = 224.1185$$

From table G: A = 0.000209From table HA-1: B = 2,750.0218 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 2,750.02}{3 \cdot (41.9998/0.1874)} = \underline{16.36} \; \mathrm{psi}$$

% Forming strain - UHA-44(a)(2)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 0.1874}{20.9062}\right) \cdot \left(1 - \frac{20.9062}{\infty}\right) = 0.4482\%$$

Allowable Compressive Stress, Hot and Corroded- $\rm S_{cHC},$ (table HA-1)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{20.9999/0.1874} = 0.001115$$
$$B = 7,619 \text{ psi}$$
$$S = \frac{18,900}{1.00} = 18,900 \text{ psi}$$

 $S_{c\!H\!C}~=~\min{\left(B,S
ight)}=$ 7,619 psi

Allowable Compressive Stress, Hot and New- $\mathsf{S}_{\mathsf{CHN}}$

 $S_cHN=S_cHC=$ 7,619 psi

Allowable Compressive Stress, Cold and New- S_{cCN}, (table HA-1)

$$\begin{split} A &= \frac{0.125}{R_o/t} = \frac{0.125}{20.9999/0.1874} = 0.001115\\ B &= 9,371 \text{ psi}\\ S &= \frac{20,000}{1.00} = 20,000 \text{ psi}\\ S_{cCN} &= \min \left(B,S\right) = 9,371 \text{ psi} \end{split}$$

Allowable Compressive Stress, Cold and Corroded- \mathbf{S}_{cCC}

 $S_{c\mathbb{C}}~=S_{cCN}~=9{,}371~\mathrm{psi}$

Allowable Compressive Stress, Vacuum and Corroded- S_{cVC}, (table HA-1)

$$A = rac{0.125}{R_o/t} = rac{0.125}{20.9999/0.1874} = 0.001115$$

 $B = 7,619 \, \mathrm{psi}$

$$S = \frac{13,900}{1.00} = 18,900$$
 psi

 $S_{c\!V\!C}\ =\ \min\ (B,S\,)=$ 7,619 psi

Capped Vent Port (P4)

ASME Section VIII Division 1, 2019 Edition					
ASME Section VIII DIVISION 1, 2019 Edition					
0.1874					
Note: round inside edges per UG-76(c)					
Location ar	nd Orientation				
Located on	ASME Shell Band (front)				
Orientation	0°				
Nozzle center line offset to datum line	143.625"				
End of nozzle to shell center	21.745"				
Passes through a Category A joint	No				
No	ozzle				
Service	Vent (VENT)				
Description	NPS 0.5 Class 3000 - Threaded Half Coupling				
Access opening	No				
Material specification	SA-312 TP304 Wld pipe (II-D p. 92, In. 3)				
Inside diameter, new	0.84"				
Pipe nominal wall thickness	0.14"				
Pipe minimum wall thickness ¹	0.1225"				
Corrosion allowance	0"				
Projection available outside vessel, Lpr	0.7451"				
Local vessel minimum thickness	0.1874"				
Liquid static head included	0 psi				
Longitudinal joint efficiency	1				
Welds					
Inner fillet, Leg ₄₁	0.1875"				
Nozzle to vessel groove weld	0.1874"				
1					

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

UHA-51 Material Toughness Requirements Nozzle				
$t_r = \frac{86.35 \cdot 0.42}{17,000 \cdot 1 - 0.6 \cdot 86.35} =$	0.0021"			
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0021 \cdot 1}{0.1225 - 0} =$	0.0175			
Impact test exempt per UHA-51(g) (coincident ratio = 0.0175)				
Rated MDMT =	-320°F			
Material is exempt from impact testing at the Design MDMT of -20°F.				

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)						UG-44 Sur	nmary (in)
	For P = 169.26 psi @ 300 °F				The nozzle p	asses UG-44	
A required						t _{req}	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a) 0.0625 0.1225							

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary					
Weld description	Actual weld throat size (in)	Status			
Nozzle to shell fillet (Leg ₄₁)	<u>0.0937</u>	0.1312	weld size is adequate		

Calculations for internal pressure 169.26 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

- $L_{R} = \max [d, R_n + (t_n C_n) + (t C)]$
 - $= \max \left[0.84, 0.42 + (0.14 0) + (0.1874 0) \right]$
 - = 0.84 in

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min \left[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e \right]$$

- = min $[2.5 \cdot (0.1874 0), 2.5 \cdot (0.14 0) + 0]$
- = 0.35 in

Nozzle required thickness per UG-27(c)(1)

D

 $t_{rn} = \frac{1}{S_n \cdot I_n}$

$$= \frac{169.2631 \cdot 0.42}{18,900 \cdot 1 - 0.6 \cdot 169.2631}$$

 $P\cdot R_n$

= 0.0038 in

Required thickness tr from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

=
$$\frac{169.2631 \cdot 20.8125}{18,900 \cdot 1 - 0.6 \cdot 169.2631}$$

= 0.1874 in

Required thickness tr per Interpretation VIII-1-07-50

$$= \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{169.2631 \cdot 20.8125}{18,900 \cdot 0.7 - 0.6 \cdot 169.2631}$$

= 0.2683 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

tr

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-44 Thickness Check - ASME B16.11 Coupling

 $= \max [0.0059, 0.0625]$ = 0.0625 in

Available nozzle wall thickness new, t_{n} = $0.875 \cdot 0.14$ = 0.1225 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²) UG-44 Summary (in)						
	For P = 179.12 psi @ 70 °F				The nozzle p	asses UG-44
A required					t _{req}	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a) 0.0625 0.1225						

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

Calculations for internal pressure 179.12 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

- $L_{R} = \max [d, R_n + (t_n C_n) + (t C)]$
 - $= \max \left[0.84, 0.42 + (0.14 0) + (0.1874 0) \right]$
 - = 0.84 in

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min [2.5 · (t - C), 2.5 · (t_n - C_n) + t_e]

- $= \min \left[2.5 \cdot (0.1874 0), 2.5 \cdot (0.14 0) + 0 \right]$
- = 0.35 in

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$

= $\frac{179.1185 \cdot 0.42}{20,000 \cdot 1 - 0.6 \cdot 179.1185}$
= 0.0038 in

Required thickness t_r from UG-37(a)

 $t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$ = $\frac{179.1185 \cdot 20.8125}{20,000 \cdot 1 - 0.6 \cdot 179.1185}$ = 0.1874 in

Required thickness tr per Interpretation VIII-1-07-50

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

= $\frac{179.1185 \cdot 20.8125}{20,000 \cdot 0.7 - 0.6 \cdot 179.1185}$
= 0.2683 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UG-44 Thickness Check - ASME B16.11 Coupling

Available nozzle wall thickness new, t_{n} = $0.875 \cdot 0.14$ = 0.1225 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)						UG-45 Sur	nmary (in)
	For Pe = 16.36 psi @ 300 °F				The nozzle p	asses UG-45	
A required						t _{req}	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a) 0.0625 0.1225							

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary					
Weld description Required weld throat size (in) Actual weld throat size (in) Status					
Nozzle to shell fillet (Leg ₄₁)	<u>0.0937</u>	0.1312	weld size is adequate		

Calculations for external pressure 16.36 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[0.84, 0.42 + (0.14 0) + (0.1874 0) \right]$
- = 0.84 in

Outer Normal Limit of reinforcement per UG-40

 $L_{H} = \min \left[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e \right]$

- = min $[2.5 \cdot (0.1874 0), 2.5 \cdot (0.14 0) + 0]$
- = 0.35 in

Nozzle required thickness per UG-28 trn = 0.0032 in

From UG-37(d)(1) required thickness t_r = 0.1874 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [0.75, t_n, t] = 0.14$ in $t_{c(\min)} = \min [0.09375, 0.7 \cdot t_{\min}] = 0.0937$ in $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 0.1875 = 0.1313$ in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-28}}$	=	0.0032 in
t_a	=	$\max\left[t_{a\mathrm{UG-28}},t_{a\mathrm{UG-22}}\right]$
	=	$\max[0.0032, 0]$
	=	0.0032 in

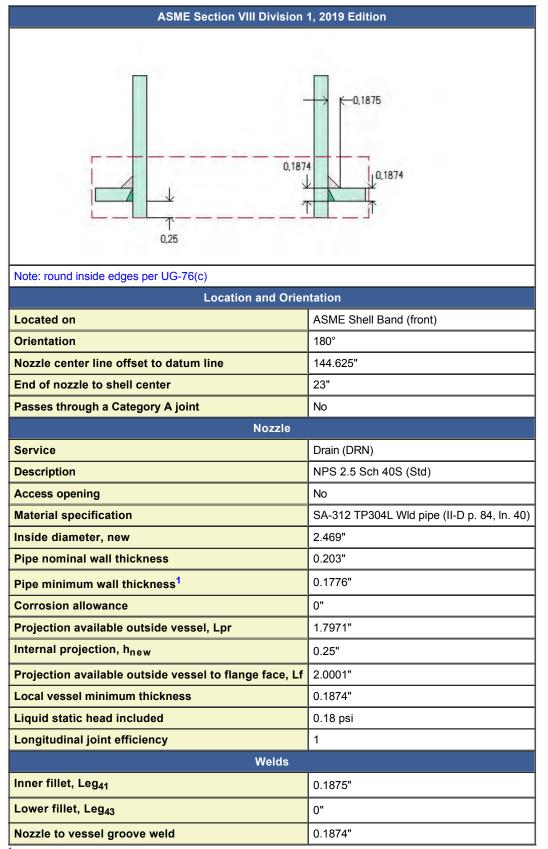
t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{16.3605 \cdot 20.8125}{18,900 \cdot 1 - 0.6 \cdot 16.3605} + 0$
	=	0.018 in
t_{b2}	=	$\max [t_{b2}, t_{b\mathrm{UG16}}] \ \max [0.018, 0.0625]$
	=	0.0625 in
t_b	=	$\min \; [t_{b3}, t_{b2}]$
	=	$\min\ [0.1164, 0.0625]$
	=	0.0625 in
$t_{ m UG-45}$	=	$\max\ [t_a,t_b]$
	=	$\max \left[0.0032, 0.0625 ight]$
	=	<u>0.0625</u> in

Available nozzle wall thickness new, t_{n} = $0.875 \cdot 0.14$ = 0.1225 in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 300 °F) UG-28(c)

 $\frac{L}{D_o} = \frac{0.7525}{1.12} = 0.6719$ $\frac{D_o}{t} = \frac{1.12}{0.0032} = 346.0660$


From table G: A = 0.000322From table HA-1: B = 4,247.0545 psi

 $P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 4{,}247.05}{3 \cdot (1.12/0.0032)} = 16.36 \ \, {\rm psi}$

Design thickness for external pressure P_a = 16.36 psi

 $t_a = t + \text{Corrosion} = 0.0032 + 0 = 0.0032$ "

SS Condensate Drain (P2)

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2013 Flange					
Description	NPS 2.5 Class 150 SO A105				
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 398, In. 32)				
Blind included	No				
Rated MDMT	-55°F				
Liquid static head	0.25 psi				
MAWP rating	230 psi @ 300°F				
MAP rating	285 psi @ 70°F				
Hydrotest rating	450 psi @ 70°F				
External fillet weld leg (UW-21)	0.2842" (0.2842" min)				
Internal fillet weld leg (UW-21)	0.203" (0.203" min)				
PWHT performed	No				
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	No				
Impact Tested	No				
UW-21 Flange Welds					
$egin{array}{lll} X_{\min} \ = \ \min \ [1.4 \cdot t_n, g_0] = [1.4 \cdot 0.203, 0.31] = \end{array}$	0.2842"				
$egin{array}{llllllllllllllllllllllllllllllllllll$	0.2842"				
$\boxed{ \text{Internal Leg}_{\min} = \min \left[t_n, 0.25" + \frac{C_i}{0.7} \right] = \min \left[0.203, 0.25 + \frac{0}{0.7} \right] = }$	0.203"				
Notes					
Flange rated MDMT per UCS-66(b)(3) = -155°F (Coincident ratio = 0.3039) Bolts rated MDMT per Fig UCS-66 note (c) = -55°F					

UHA-51 Material Toughness Requirements Nozzle				
$t_r = \frac{86.53 \cdot 1.2345}{14,200 \cdot 1 - 0.6 \cdot 86.53} =$	0.0076"			
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0076 \cdot 1}{0.1776 - 0} =$	0.0425			
Impact test exempt per UHA-51(g) (coincident ratio = 0.0425)				
Rated MDMT =	-320°F			
Material is exempt from impact testing at the Design MD	MT of -20°F.			

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)						UG-45 Sur	nmary (in)	
	For P = 169.26 psi @ 300 °F						The nozzle p	asses UG-45
A required							t _{req}	t _{min}
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a)						<u>0.1776</u>	0.1776

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary							
Weld description	Weld description Required weld throat size (in) Actual weld throat size (in) Status						
Nozzle to shell fillet (Leg ₄₁) 0.1312 0.1312 weld size is adequat							

Calculations for internal pressure 169.26 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

- $L_{R} = \max [d, R_n + (t_n C_n) + (t C)]$
 - $= \max \left[2.469, 1.2345 + (0.203 0) + (0.1874 0) \right]$
 - = 2.469 in

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min \left[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e \right]$$

- $= \min \left[2.5 \cdot (0.1874 0), 2.5 \cdot (0.203 0) + 0 \right]$
- = 0.4685 in

Inner Normal Limit of reinforcement per UG-40

- $\mathsf{L}_{\mathsf{I}} = \min [h, 2.5 \cdot (t C), 2.5 \cdot (t_i C_n C)]$
 - $= \min \left[0.25, 2.5 \cdot (0.1874 0), 2.5 \cdot (0.203 0 0) \right]$
 - = 0.25 in

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$

=
$$\frac{169.2629 \cdot 1.2345}{16,700 \cdot 1 - 0.6 \cdot 169.2629}$$

=
$$0.0126 \text{ in}$$

Required thickness t_r from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

=
$$\frac{169.2629 \cdot 20.8125}{18,900 \cdot 1 - 0.6 \cdot 169.2629}$$

= 0.1874 in

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

= $\frac{169.2629 \cdot 20.8125}{18,900 \cdot 0.7 - 0.6 \cdot 169.2629}$
= 0.2683 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{169.3351\cdot 1.2345}{14,200\cdot 1-0.6\cdot 169.3351}+0$
	=	0.0148 in
t_a	=	$\max\left[t_{a\mathrm{UG-27}},t_{a\mathrm{UG-22}}\right]$
	=	$\max[0.0148, 0]$
	=	0.0148 in
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{169.2629 \cdot 20.8125}{18,900 \cdot 1 - 0.6 \cdot 169.2629} + 0$
	=	0.1874 in
t_{b1}	=	0.1874 in $\max [t_{b1}, t_{b{ m UG16}}]$
t_{b1}		
t_{b1}	=	$\max\left[t_{b1},t_{b\mathrm{UG16}}\right]$
t_{b1}	=	$\max [t_{b1}, t_{b \mathrm{UG16}}] \ \max [0.1874, 0.0625]$
	= =	$\max[t_{b1}, t_{bUG16}]$ max [0.1874, 0.0625] 0.1874 in
	=	$\begin{array}{l} \max \left[t_{b1}, t_{b \mathrm{UG16}} \right] \\ \max \left[0.1874, 0.0625 \right] \\ 0.1874 \ \mathrm{in} \\ \min \left[t_{b3}, t_{b1} \right] \end{array}$
	=	$\max[t_{b1}, t_{bUG16}]$ $\max[0.1874, 0.0625]$ 0.1874 in $\min[t_{b3}, t_{b1}]$ $\min[0.1776, 0.1874]$
t_b	=	$\begin{array}{l} \max \left[t_{b1}, t_{bUG16} \right] \\ \max \left[0.1874, 0.0625 \right] \\ 0.1874 \mathrm{in} \\ \min \left[t_{b3}, t_{b1} \right] \\ \min \left[0.1776, 0.1874 \right] \\ 0.1776 \mathrm{in} \end{array}$
t_b		$\begin{array}{l} \max \left[t_{b1} , t_{bUG16} \right] \\ \max \left[0.1874 , 0.0625 \right] \\ 0.1874 \mbox{ in} \\ \min \left[t_{b3} , t_{b1} \right] \\ \min \left[0.1776 , 0.1874 \right] \\ 0.1776 \mbox{ in} \\ \max \left[t_a , t_b \right] \end{array}$

Available nozzle wall thickness new, t_{n} = $0.875\cdot0.203$ = 0.1776 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)							UG-45 Sur	nmary (in)
	For P = 179.12 psi @ 70 °F						The nozzle p	asses UG-45
A required								t _{min}
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a						<u>0.1776</u>	0.1776

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

Calculations for internal pressure 179.12 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

- L_{R} = max $[d, R_n + (t_n C_n) + (t C)]$
 - $= \max \left[2.469, 1.2345 + (0.203 0) + (0.1874 0) \right]$
 - = 2.469 in

Outer Normal Limit of reinforcement per UG-40

- $L_{H} = \min \left[2.5 \cdot (t C), 2.5 \cdot (t_n C_n) + t_e \right]$
 - $= \min \left[2.5 \cdot (0.1874 0), 2.5 \cdot (0.203 0) + 0 \right]$
 - = 0.4685 in

Inner Normal Limit of reinforcement per UG-40

$$\mathsf{L}_{\mathsf{I}} = \min [h, 2.5 \cdot (t - C), 2.5 \cdot (t_i - C_n - C)]$$

- $= \min \left[0.25, 2.5 \cdot (0.1874 0), 2.5 \cdot (0.203 0 0) \right]$
- = 0.25 in

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$
$$= \frac{179.1185 \cdot 1.2345}{16,700 \cdot 1 - 0.6 \cdot 179.1185}$$

= 0.0133 in

Required thickness tr from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

= $\frac{179.1185 \cdot 20.8125}{179.1185 \cdot 20.8125}$

- = 20,000 · 1 0.6 · 179.1185
- = 0.1874 in

Required thickness t_r per Interpretation VIII-1-07-50

$$= \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{179.1185 \cdot 20.8125}{20,000 \cdot 0.7 - 0.6 \cdot 179.1185}$$

= 0.2683 in

tr

This opening does not require reinforcement per UG-36(c)(3)(a)

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P\cdot R_n}{S_n\cdot E - 0.6\cdot P} + \text{Corrosion}$
	=	$\frac{179.1185\cdot 1.2345}{14,200\cdot 1-0.6\cdot 179.1185}+0$
	=	0.0157 in
t_a	=	$\max\ [t_{a\mathrm{UG-27}},t_{a\mathrm{UG-22}}]$
	=	$\max[0.0157, 0]$
	=	0.0157 in
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{179.1185\cdot 20.8125}{20,000\cdot 1-0.6\cdot 179.1185}+0$
	=	0.1874 in
t_{b1}	=	$\max\left[t_{b1},t_{b\mathrm{UG16}}\right]$
	=	$\max \left[0.1874, 0.0625 ight]$
	=	0.1874 in
t_b	=	$\min \left[t_{b3} , t_{b1} \right]$
	=	min $[0.1776, 0.1874]$
	=	0.1776 in
$t_{ m UG-45}$	=	$\max\ [t_a,t_b]$
	=	$\max[0.0157, 0.1776]$
	=	<u>0.1776</u> in
Available		a wall thickness new $t = 0.875 \cdot 0.203 = 0$

Available nozzle wall thickness new, $t_{\textrm{n}}$ = $0.875 \cdot 0.203$ = 0.1776 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)						UG-45 Sur	nmary (in)	
For Pe = 16.36 psi @ 300 °F						The nozzle p	asses UG-45	
A required							t _{req}	t _{min}
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a)						<u>0.0625</u>	0.1776

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary						
Weld description Required weld throat size (in) Actual weld throat size (in) Status						
Nozzle to shell fillet (Leg ₄₁) 0.1312 0.1312 weld size is adequate						

Calculations for external pressure 16.36 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[2.469, 1.2345 + (0.203 0) + (0.1874 0) \right]$
- = 2.469 in

Outer Normal Limit of reinforcement per UG-40

 $L_{H} = \min \left[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e \right]$

- $= \min \left[2.5 \cdot (0.1874 0), 2.5 \cdot (0.203 0) + 0 \right]$
- = 0.4685 in

Inner Normal Limit of reinforcement per UG-40

 $L_{I} = \min [h, 2.5 \cdot (t - C), 2.5 \cdot (t_{i} - C_{n} - C)]$

- = min $[0.25, 2.5 \cdot (0.1874 0), 2.5 \cdot (0.203 0 0)]$
- = 0.25 in

Nozzle required thickness per UG-28 trn = 0.0085 in

From UG-37(d)(1) required thickness $t_r = 0.1874$ in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [0.75, t_n, t] = 0.1874$ in $t_{c(\min)} = \min [0.25, 0.7 \cdot t_{\min}] = 0.1312$ in $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 0.1875 = 0.1313$ in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a { m UG-} 28}$	=	0.0085 in
t_a	=	$\max\left[t_{a\mathrm{UG-28}},t_{a\mathrm{UG-22}}\right]$
	=	$\max [0.0085, 0]$
	=	0.0085 in
t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{16.3605 \cdot 20.8125}{18,900 \cdot 1 - 0.6 \cdot 16.3605} + 0$
	=	0.018 in
t_{b2}	=	$\max\left[t_{b2},t_{b\mathrm{UG16}}\right]$
	=	$\max\ [0.018, 0.0625]$
	=	0.0625 in
t_b	=	$\min \; [t_{b3},t_{b2}]$
	=	$\min\ [0.1776, 0.0625]$
	=	0.0625 in
$t_{ m UG-45}$	=	$\max\ [t_a,t_b]$
	=	$\max\ [0.0085, 0.0625]$
	=	<u>0.0625</u> in

Available nozzle wall thickness new, t_{n} = $0.875 \cdot 0.203$ = 0.1776 in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 300 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{2.0494}{2.875} = 0.7128$$
$$\frac{D_o}{t} = \frac{2.875}{0.0085} = 338.0546$$

From table G: A = 0.000313From table HA-3: B = 4,148.3003 psi

 $P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 4,\!148.3}{3 \cdot (2.875/0.0085)} = 16.36$ psi

Design thickness for external pressure P_a = 16.36 psi

 $t_a = t + \text{Corrosion} = 0.0085 + 0 = 0.0085$ "

Shell #1

	ASME Section VIII Division 1, 2019 Edition							
Com	ponent	Cylinder						
Ма	terial	SA-240 304 (II-D p. 88, In. 37)						
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP				
No	No	No	No	No				
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)				
Int	ernal	25	300	-20				
Ext	ternal	15	300	-20				
	Static Liquid Head							
Cor	dition	P _s (psi)	H _s (in)	SG				
Оре	erating	0.17	4.8125	1				
Test h	orizontal	1.62 44.8125		1				
		Dimensio	ns					
Inner I	Diameter	41.625"						
Le	ngth	96"						
Nominal	Thickness	0.1874"						
Corrosion	Inner	0"						
Corrosion	Outer	0"						
		Weight and C	apacity					
		Wei	Capacity (US gal)					
N	lew	6	82.65	314.37				
Cor	roded	682.65 314.37						
		Radiograp	ohy					
Longitu	dinal seam		None UW-11(c) Type 1					
Left Circum	ferential seam	None UW-11(c) Type 1						
Right Circun	nferential seam	None UW-11(c) Type 1						

Results Summary	
Governing condition	External pressure
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"
Design thickness due to internal pressure (t)	<u>0.0397"</u>
Design thickness due to external pressure (t_e)	<u>0.1811"</u>
Maximum allowable working pressure (MAWP)	<u>118.31 psi</u>
Maximum allowable pressure (MAP)	<u>125.38 psi</u>
Maximum allowable external pressure (MAEP)	<u>16.36 psi</u>
Rated MDMT	-320 °F

UHA-51 Material Toughness Requirements						
$t_r = rac{86.52 \cdot 20.8125}{20,000 \cdot 0.7 - 0.6 \cdot 86.52} =$	0.1291"					
Stress ratio $= rac{t_r \cdot E^*}{t_n - c} = rac{0.1291 \cdot 0.8}{0.1874 - 0} =$	0.5511					
Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0.10%) = -320°F						
Material is exempt from impact testing at the Design MDMT	of -20°F.					

Design thickness, (at 300 °F) UG-27(c)(1)

 $t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{25.17 \cdot 20.8125}{18,900 \cdot 0.70 - 0.60 \cdot 25.17} + 0 = \underline{0.0397}"$

Maximum allowable working pressure, (at 300 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{18,900 \cdot 0.70 \cdot 0.1874}{20.8125 + 0.60 \cdot 0.1874} - 0.17 = \underline{118.31} \text{ psi}$$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{20,000 \cdot 0.70 \cdot 0.1874}{20.8125 + 0.60 \cdot 0.1874} = \underline{125.38} \text{ psi}$$

External Pressure, (Corroded & at 300 °F) UG-28(c)

 $\frac{L}{D_o} = \frac{79.0875}{41.9998} = 1.8830$ $\frac{D_o}{t} = \frac{41.9998}{0.1811} = 231.9293$

From table G: A = 0.000198From table HA-1: B = 2,609.2194 psi

 $P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 2{,}609{.}22}{3 \cdot (41{.}9998/0{.}1811)} = 15 \ \, {\rm psi}$

Design thickness for external pressure $P_a = 15$ psi

 $t_a = t + \text{Corrosion} = 0.1811 + 0 = 0.1811$ "

Maximum Allowable External Pressure, (Corroded & at 300 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{79.0875}{41.9998} = 1.8830$$
$$\frac{D_o}{t} = \frac{41.9998}{0.1874} = 224.1185$$

From table G: A = 0.000209From table HA-1: B = 2,750.0218 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 2,750.02}{3 \cdot (41.9998/0.1874)} = \underline{16.36} \; \mathrm{psi}$$

% Forming strain - UHA-44(a)(2)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 0.1874}{20.9062}\right) \cdot \left(1 - \frac{20.9062}{\infty}\right) = 0.4482\%$$

Allowable Compressive Stress, Hot and Corroded- $\rm S_{cHC},$ (table HA-1)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{20.9999/0.1874} = 0.001115$$
$$B = 7,619 \text{ psi}$$
$$S = \frac{18,900}{1.00} = 18,900 \text{ psi}$$

 $S_{c\!H\!C}~=~\min{\left(B,S
ight)}=$ 7,619 psi

Allowable Compressive Stress, Hot and New- $\mathsf{S}_{\mathsf{CHN}}$

 $S_cHN = S_cHC = 7,619$ psi

Allowable Compressive Stress, Cold and New- S_{cCN}, (table HA-1)

$$\begin{split} A &= \frac{0.125}{R_o/t} = \frac{0.125}{20.9999/0.1874} = 0.001115\\ B &= 9,371 \text{ psi}\\ S &= \frac{20,000}{1.00} = 20,000 \text{ psi}\\ S_{cCN} &= \min \left(B,S\right) = 9,371 \text{ psi} \end{split}$$

Allowable Compressive Stress, Cold and Corroded- \mathbf{S}_{cCC}

 $S_{c\mathbb{C}}~=S_{cCN}~=9{,}371~\mathrm{psi}$

Allowable Compressive Stress, Vacuum and Corroded- $S_{\text{cVC}},$ (table HA-1)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{20.9999/0.1874} = 0.001115$$
$$B = 7{,}619 \text{ psi}$$

$$S = \frac{18,900}{1.00} = 18,900$$
 psi

 $S_{c\!V\!C}\ =\ \min\ (B,S\,)=$ 7,619 psi

Cleanout (P7)

ASME Section VIII Division 1, 2019 Edition							
Note: round inside edges per UG-76(c) Location and Or	iontation						
Located on	Shell #1						
Orientation	0°						
Nozzle center line offset to datum line	48"						
End of nozzle to shell center	24"						
Passes through a Category A joint	No						
Nozzle							
Service	Cleanout Port (CLEANOUT)						
Description	NPS 2 Sch 10S						
Access opening	No						
Material specification	SA-312 TP304 Wld & smls pipe (II-D p. 92, In. 1)						
Inside diameter, new	2.157"						
Pipe nominal wall thickness	0.109"						
Pipe minimum wall thickness ¹	0.0954"						
Corrosion allowance	0"						
Projection available outside vessel, Lpr	2.8911"						
Projection available outside vessel to flange face, Lf	3.0001"						
Local vessel minimum thickness	0.1874"						
Liquid static head included	0 psi						
Longitudinal joint efficiency	1						
Welds							
Inner fillet, Leg ₄₁	0.1875"						
Nozzle to vessel groove weld	0.125"						
	,						

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2013 Flange						
Description	NPS 2 Class 150 SO A105					
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 398, In. 32)					
Blind included	No					
Rated MDMT	-55°F					
Liquid static head	0 psi					
MAWP rating	230 psi @ 300°F					
MAP rating	285 psi @ 70°F					
Hydrotest rating	450 psi @ 70°F					
External fillet weld leg (UW-21)	0.2156" (0.1526" min)					
Internal fillet weld leg (UW-21)	0.109" (0.109" min)					
PWHT performed	No					
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	No					
Impact Tested	No					
UW-21 Flange Welds						
$egin{array}{lll} X_{\min} \ = \ \min \ [1.4 \cdot t_n, g_0] = [1.4 \cdot 0.109, 0.31] = \end{array}$	0.1526"					
${ m External Leg}_{ m min} = X_{ m min} + rac{C_o}{0.7} = 0.1526 + rac{0}{0.7} =$	0.1526"					
$\boxed{ \text{Internal Leg}_{\min} = \min \left[t_n, 0.25" + \frac{C_i}{0.7} \right] = \min \left[0.109, 0.25 + \frac{0}{0.7} \right] = }$	0.109"					
Notes						
Flange rated MDMT per UCS-66(b)(3) = -155°F (Coincident ratio = 0.303) Bolts rated MDMT per Fig UCS-66 note (c) = -55°F						

UHA-51 Material Toughness Requirements Nozzle					
$t_r = \frac{86.35 \cdot 1.0785}{20,000 \cdot 1 - 0.6 \cdot 86.35} =$	0.0047"				
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0047 \cdot 1}{0.0954 - 0} =$	0.049				
Impact test exempt per UHA-51(g) (coincident ratio = 0.049)					
Rated MDMT = -320°F					
Material is exempt from impact testing at the Design MD	MT of -20°F.				

Reinforcement Calculations for MAWP

The thickness requirements of UG-45 govern the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)							UG-45 Sur	nmary (in)
	For P = 86.35 psi @ 300 °F						The nozzle p	asses UG-45
A required								t _{min}
This nozzle is	exempt from a	irea ca	alculat	ions pe	er UG-	36(c)(3)(a)	<u>0.0953</u>	0.0954

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary								
Weld description	Status							
Nozzle to shell fillet (Leg ₄₁)	<u>0.0763</u>	0.1312	weld size is adequate					
Combined weld check $(t_1 + t_2)$	<u>0.1362</u>	0.2562	weld size is adequate					
Nozzle to shell groove (Lower)	<u>0.0763</u>	0.125	weld size is adequate					

Calculations for internal pressure 86.35 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

 $L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[2.157, 1.0785 + (0.109 0) + (0.1874 0) \right]$
- = 2.157 in

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min [2.5 · (t - C), 2.5 · (t_n - C_n) + t_e]

- = min $[2.5 \cdot (0.1874 0), 2.5 \cdot (0.109 0) + 0]$
- = 0.2725 in

Nozzle required thickness per UG-27(c)(1)

 $t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$ $= \frac{86.3487 \cdot 1.0785}{18,900 \cdot 1 - 0.6 \cdot 86.3487}$

= 0.0049 in

Required thickness tr from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

=
$$\frac{86.3487 \cdot 20.8125}{18,900 \cdot 1 - 0.6 \cdot 86.3487}$$

= 0.0953 in

Required thickness tr per Interpretation VIII-1-07-50

$$= \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{86.3487 \cdot 20.8125}{18,900 \cdot 0.7 - 0.6 \cdot 86.3487}$$
$$= 0.1364 \text{ in}$$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(d) Weld Check

tr

 $\begin{array}{ll} t_{\min} = \min \; [0.75, t_n, t] = 0.109 \; \mbox{ in } \\ t_{1(\min)} \; \mbox{ or } \; t_{2(\min)} = \min \; [0.25, 0.7 \cdot t_{\min}] = \underline{0.0763} \; \mbox{ in } \\ t_{1(actual)} \; = 0.7 \cdot \mbox{Leg} = 0.7 \cdot 0.1875 = 0.1312 \; \mbox{ in } \\ \mbox{The weld size } \; t_1 \; \mbox{ is satisfactory.} \\ t_{2(actual)} \; = 0.125 \; \mbox{ in } \\ \mbox{The weld size } \; t_2 \; \mbox{ is satisfactory.} \end{array}$

 $t_1 + t_2 = 0.2562 \ge 1.25 \cdot t_{\min} = 0.1362$

The combined weld sizes for $t_1 \mbox{ and } t_2 \mbox{ are satisfactory}.$

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P\cdot R_n}{S_n\cdot E - 0.6\cdot P} + \text{Corrosion}$
	=	$\frac{86.3487 \cdot 1.0785}{18,900 \cdot 1 - 0.6 \cdot 86.3487} + 0$
	=	0.0049 in
t_a	=	$\max\left[t_{a\mathrm{UG-27}},t_{a\mathrm{UG-22}}\right]$
	=	$\max[0.0049, 0]$
	=	0.0049 in
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{86.3487 \cdot 20.8125}{18,900 \cdot 1 - 0.6 \cdot 86.3487} + 0$
	=	0.0953 in
t_{b1}	=	0.0953 in $\max \; [t_{b1}, t_{b{ m UG16}}]$
t_{b1}		
t_{b1}	=	$\max \left[t_{b1}, t_{b\mathrm{UG16}} \right]$
t_{b1}	=	$\max \; [t_{b1}, t_{b { m UG16}}] \ \max \; [0.0953, 0.0625]$
	=	$\max[t_{b1}, t_{b\mathrm{UG16}}]$ $\max[0.0953, 0.0625]$ 0.0953 in
	=	$egin{array}{llllllllllllllllllllllllllllllllllll$
	= = =	$\begin{array}{l} \max \left[t_{b1}, t_{b \mathrm{UG16}} \right] \\ \max \left[0.0953, 0.0625 \right] \\ 0.0953 \mathrm{in} \\ \min \left[t_{t3}, t_{b1} \right] \\ \min \left[0.1348, 0.0953 \right] \end{array}$
t_b	=	$\begin{array}{l} \max \left[t_{b1} , t_{b \mathrm{UG16}} \right] \\ \max \left[0.0953 , 0.0625 \right] \\ 0.0953 \ \mathrm{in} \\ \min \left[t_{t3} , t_{b1} \right] \\ \min \left[0.1348 , 0.0953 \right] \\ 0.0953 \ \mathrm{in} \end{array}$

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAP

The thickness requirements of UG-45 govern the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)							UG-45 Sur	nmary (in)
	For P = 91.37 psi @ 70 °F					The nozzle p	asses UG-45	
A required								t _{min}
This nozzle is	exempt from a	irea ca	alculat	ions pe	er UG-	36(c)(3)(a)	<u>0.0953</u>	0.0954

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

Calculations for internal pressure 91.37 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

 $L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[2.157, 1.0785 + (0.109 0) + (0.1874 0) \right]$
- = 2.157 in

Outer Normal Limit of reinforcement per UG-40

 $L_{H} = \min \left[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e \right]$

- = min $[2.5 \cdot (0.1874 0), 2.5 \cdot (0.109 0) + 0]$
- = 0.2725 in

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$

= $\frac{91.3715 \cdot 1.0785}{20,000 \cdot 1 - 0.6 \cdot 91.3715}$
= 0.0049 in

Required thickness t_r from UG-37(a)

 $t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$ = $\frac{91.3715 \cdot 20.8125}{20,000 \cdot 1 - 0.6 \cdot 91.3715}$ = 0.0953 in

Required thickness tr per Interpretation VIII-1-07-50

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

= $\frac{91.3715 \cdot 20.8125}{20,000 \cdot 0.7 - 0.6 \cdot 91.3715}$
= 0.1364 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{91.3715\cdot 1.0785}{20,000\cdot 1-0.6\cdot 91.3715}+0$
	=	0.0049 in
t_a	=	$\max\left[t_{a\mathrm{UG-27}},t_{a\mathrm{UG-22}}\right]$
	=	$\max[0.0049, 0]$
	=	0.0049 in
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{91.3715\cdot 20.8125}{20,000\cdot 1-0.6\cdot 91.3715}+0$
	=	0.0953 in
t_{b1}	=	0.0953 in $\max\left[t_{b1},t_{b\mathrm{UG16}} ight]$
t_{b1}		
t_{b1}	=	$\max\left[t_{b1},t_{b\mathrm{UG16}}\right]$
t_{b1}	=	$\max[t_{b1}, t_{b ext{UG16}}] \ \max[0.0953, 0.0625]$
_	=	$\max[t_{b1}, t_{b\mathrm{UG16}}]$ $\max[0.0953, 0.0625]$ 0.0953 in
_		$\begin{array}{l} \max \left[t_{b1}, t_{b \mathrm{UG16}} \right] \\ \max \left[0.0953, 0.0625 \right] \\ 0.0953 \mathrm{in} \\ \min \left[t_{b3}, t_{b1} \right] \end{array}$
_		$\begin{array}{l} \max \left[t_{b1}, t_{b \mathrm{UG16}} \right] \\ \max \left[0.0953, 0.0625 \right] \\ 0.0953 \mathrm{in} \\ \min \left[t_{b3}, t_{b1} \right] \\ \min \left[0.1348, 0.0953 \right] \\ 0.0953 \mathrm{in} \end{array}$
t_b		$\begin{array}{l} \max \left[t_{b1}, t_{b \mathrm{UG16}} \right] \\ \max \left[0.0953, 0.0625 \right] \\ 0.0953 \ \mathrm{in} \\ \min \left[t_{b3}, t_{b1} \right] \\ \min \left[0.1348, 0.0953 \right] \\ 0.0953 \ \mathrm{in} \end{array}$
t_b		$\begin{array}{l} \max \left[t_{b1}, t_{b\mathrm{UG16}} \right] \\ \max \left[0.0953, 0.0625 \right] \\ 0.0953 \ \mathrm{in} \\ \min \left[t_{b3}, t_{b1} \right] \\ \min \left[0.1348, 0.0953 \right] \\ 0.0953 \ \mathrm{in} \\ \max \left[t_{a}, t_{b} \right] \end{array}$

Available nozzle wall thickness new, t_{n} = $0.875 \cdot 0.109$ = 0.0954 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)							UG-45 Sur	nmary (in)
	For Pe = 16.36 psi @ 300 °F						The nozzle p	asses UG-45
A required								t _{min}
This nozzle is	exempt from a	irea ca	alculat	ions pe	er UG-	36(c)(3)(a)	<u>0.0625</u>	0.0954

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary								
Weld description	Required weld size (in)	Actual weld size (in)	Status					
Nozzle to shell fillet (Leg ₄₁)	<u>0.0763</u>	0.1312	weld size is adequate					
Combined weld check $(t_1 + t_2)$	<u>0.1362</u>	0.2562	weld size is adequate					
Nozzle to shell groove (Lower)	<u>0.0763</u>	0.125	weld size is adequate					

Calculations for external pressure 16.36 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[2.157, 1.0785 + (0.109 0) + (0.1874 0) \right]$
- = 2.157 in

Outer Normal Limit of reinforcement per UG-40

- $L_{H} = \min [2.5 \cdot (t C), 2.5 \cdot (t_n C_n) + t_e]$
 - $= \min \left[2.5 \cdot (0.1874 0), 2.5 \cdot (0.109 0) + 0 \right]$
 - = 0.2725 in

Nozzle required thickness per UG-28 trn = 0.0091 in

From UG-37(d)(1) required thickness $t_r = 0.172$ in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(d) Weld Check

$$\begin{split} t_{\min} &= \min \; [0.75, t_n, t] = 0.109 \; \text{ in} \\ t_{1(\min)} \; \text{ or } \; t_{2(\min)} &= \min \; [0.25, 0.7 \cdot t_{\min}] = \underline{0.0763} \; \text{ in} \\ t_{1(actual)} \; = 0.7 \cdot \text{Leg} = 0.7 \cdot 0.1875 = 0.1312 \; \text{ in} \\ \text{The weld size } \; t_1 \; \text{ is satisfactory.} \\ t_{2(actual)} \; = 0.125 \; \text{ in} \\ \text{The weld size } \; t_2 \; \text{ is satisfactory.} \end{split}$$

 $t_1 + t_2 = 0.2562 \ge 1.25 \cdot t_{\min} = 0.1362$

The combined weld sizes for t_1 and t_2 are satisfactory.

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-28}}$	=	0.0091 in
t_a	=	$\max\left[t_{a\mathrm{UG-28}},t_{a\mathrm{UG-22}} ight]$
	=	$\max[0.0091, 0]$
	=	0.0091 in
t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{16.3605 \cdot 20.8125}{18,900 \cdot 1 - 0.6 \cdot 16.3605} + 0$
	=	0.018 in
t_{b2}	=	$\max\left[t_{b2},t_{b\mathrm{UG16}}\right]$
	=	$\max[0.018, 0.0625]$
	=	0.0625 in
t_b	=	$\min [t_{b3}, t_{b2}]$
	=	min $[0.1348, 0.0625]$
	=	0.0625 in
$t_{ m UG-45}$	=	$\max\ [t_a,t_b]$
	=	$\max[0.0091, 0.0625]$
	=	<u>0.0625</u> in

Available nozzle wall thickness new, t_{n} = $0.875 \cdot 0.109$ = 0.0954 in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 300 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{3.0337}{2.375} = 1.2773$$
$$\frac{D_o}{t} = \frac{2.375}{0.0091} = 262.3238$$

From table G: A = 0.000244From table HA-1: B = 3,218.5949 psi

 $P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 3,\! 218.59}{3 \cdot (2.375/0.0091)} = 16.36 \ \, {\rm psi}$

Design thickness for external pressure P_a = 16.36 psi

 $t_a = t + \text{Corrosion} = 0.0091 + 0 = 0.0091$ "

Rings #1

ASME Section VIII Div	vision 1, 2019 Edition			
Attached to	Shell #1			
Ring type	Flat bar			
Description	3/8x2.5 Flat Bar			
Material	SA-479 304L Bar (low stress) (II-D p. 84, In. 46)			
External design pressure	15 psi			
External design temperature	300°F			
Corrosion allowance	0"			
Distance from ring neutral axis to datum	72.1625"			
Distance to previous support	79.0875"			
Distance to next support	63.6625"			
Internal ring	No			
We	lds			
Weld configuration	Continuous both sides			
Fillet weld leg size	0.1875"			
Vessel thickness at weld location, new	0.1874"			
Vessel corrosion allowance at weld location	0"			
Stiffener thickness at weld location	0.375"			
Ring Properties				
Max depth to thickness ratio	12			
Ring distance to centroid	1.25"			
Ring area	0.9375 in ²			
Ring inertia	0.4883 in ⁴			

External Pressure, (Corroded & at 300°F) UG-29(a)

 $\frac{L}{D_o} = \frac{79.0875}{41.9998} = 1.883$ $\frac{D_o}{t} = \frac{41.9998}{0.1811} = 231.874$ From Table G: A = 1.9828E-04 From Table HA-1: B = 2,610.22 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o / t)} = \frac{4 \cdot 2,610.22}{3 \cdot (41.9998 / 0.181132)} = 15.01 \text{ psi}$$

$$B = \frac{3}{4} \cdot \left(\frac{P \cdot D_o}{t + A_s \ / \ L_s}\right) = \frac{3}{4} \cdot \left(\frac{15 \cdot 41.9998}{0.1811 + 0.9375 \ / \ 71.375}\right) = 2,433 \text{ psi}$$

_

From Table HA-3: A = 0.00018349 (ring, 300°F) From Table HA-1: A = 0.00018462 (shell, 300°F)

$$I_{s'} = \frac{D_o^2 \cdot L_s \cdot (t + A_s / L_s) \cdot A}{10.9}$$

= $\frac{41.9998 \ ^2 \cdot 71.375 \cdot (0.1811 + 0.9375 / 71.375) \cdot 0.00018462}{10.9}$
= 0.4142 in^4

I' for the composite corroded shell-ring cross section is 1.1358 in⁴

As $l' \ge l_s'$ a 3/8x2.5 Flat Bar stiffener is adequate for an external pressure of 15 psi.

Check the stiffener ring attachment welds per UG-30

UG-30(f) minimum weld size = min [0.25, 0.1874 - 0 - 0, 0.375] + 0 = 0.1874 in

The fillet weld size of 0.1875 in is adequate per UG-30(f).

Radial pressure load, $P \cdot L_s = 15 \cdot 71.375 = 1,070.63 \text{ lb}_f/\text{in}$ Radial shear load, $V = 0.01 \cdot P \cdot L_s \cdot D_o = 0.01 \cdot 15 \cdot 71.375 \cdot 41.9998 = 449.66 \text{ lb}_f$

First moment of area, $Q = 0.58 \cdot 0.831 = 0.4806 \text{ in}^3$

Weld shear flow, $q=rac{V\cdot Q}{I^{\,\prime}}=190.2748~~{
m lb}_f/{
m in}$

Combined weld load, $f_w = \sqrt{1,\!070.625^{-2}+190.2748^{-2}} = 1,\!087.4~{
m lb}_f/{
m in}$

Allowable weld stress per UW-18(d) $S_w = 0.55 \cdot S = 0.55 \cdot 12{,}800 = 7{,}040~~\mathrm{psi}$

Fillet weld size required to resist radial pressure and shear

$$t_w = rac{f_w \cdot (d_{ ext{weld segment}} + d_{ ext{toe}})}{S_w \cdot d_{ ext{weld total}}} + ext{corrosion} = rac{1,087.4 \cdot (1+0)}{7,040 \cdot 2} + 0 = 0.0772$$
 in

The fillet weld size of 0.1875 in is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 300°F) UG-29(a)

$$\frac{L}{D_o} = \frac{79.0875}{41.9998} = 1.883$$

$$\frac{D_o}{t} = \frac{41.9998}{0.1874} = 224.1185$$
From Table G: $A = 2.0886\text{E-}04$
From Table HA-1: $B = 2,750.02$ psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o \ / \ t)} = \frac{4 \cdot 2,750.02}{3 \cdot (41.9998 \ / \ 0.1874)} = 16.36$$
 psi

$$B = \frac{3}{4} \cdot \left(\frac{P \cdot D_o}{t + A_s \ / \ L_s} \right) = \frac{3}{4} \cdot \left(\frac{16.36 \cdot 41.9998}{0.1874 + 0.9375 \ / \ 71.375} \right) = 2,570 \text{ psi}$$

From Table HA-3: A = 0.00019384 (ring, 300°F) From Table HA-1: A = 0.00019501 (shell, 300°F)

$$I_{s'} = \frac{D_{o}^{2} \cdot L_{s} \cdot (t + A_{s} / L_{s}) \cdot A}{10.9}$$
$$= \frac{41.9998^{-2} \cdot 71.375 \cdot (0.1874 + 0.9375 / 71.375) \cdot 0.00019501}{10.9}$$

 $= 0.4517 \text{ in}^4$

I' for the composite corroded shell-ring cross section is 1.1358 in⁴

As $l' \ge l_s'$ a 3/8x2.5 Flat Bar stiffener is adequate for an external pressure of 16.36 psi.

Check the stiffener ring attachment welds per UG-30 UG-30(f) minimum weld size = $\min [0.25, 0.1874 - 0 - 0, 0.375] + 0 = 0.1874$ in

The fillet weld size of 0.1875 in is adequate per UG-30(f).

Radial pressure load, $P \cdot L_s = 16.36 \cdot 71.375 = 1,167.73$ lb_f/in

Radial shear load, $V = 0.01 \cdot P \cdot L_s \cdot D_o = 0.01 \cdot 16.36 \cdot 71.375 \cdot 41.9998 = 490.44$ lb_f First moment of area, $Q = 0.58 \cdot 0.831 = 0.4806$ in³

Weld shear flow, $q = \frac{V \cdot Q}{I'} = 207.5323 \text{ lb}_f/\text{in}$ Combined weld load, $f_w = \sqrt{1,167.728^{-2} + 207.5323^{-2}} = 1,186.03 \text{ lb}_f/\text{in}$

Allowable weld stress per UW-18(d) $S_w = 0.55 \cdot S = 0.55 \cdot 12{,}800 = 7{,}040~~\mathrm{psi}$

Fillet weld size required to resist radial pressure and shear

 $t_w = rac{f_w \cdot (d_{ ext{weld segment}} + d_{ ext{toe}})}{S_w \cdot d_{ ext{weld total}}} + ext{corrosion} = rac{1,186.03 \cdot (1+0)}{7,040 \cdot 2} + 0 = 0.0842$ in

The fillet weld size of 0.1875 in is adequate to resist radial pressure and shear.

SS Vent (P5)

ASME Section VIII	Division 1, 2019 Edition			
0,1874				
Note: round inside edges per UG-76(c)				
Location a	nd Orientation			
Located on	Shell #1			
Orientation	270°			
Nozzle center line offset to datum line	126.625"			
End of nozzle to shell center	21.6866"			
Passes through a Category A joint	No			
N	ozzle			
Description	NPS 0.25 Class 3000 - Threaded Half Coupling			
Access opening	No			
Material specification	SA-312 TP304 Wld pipe (II-D p. 92, In. 3)			
Inside diameter, new	0.53"			
Pipe nominal wall thickness	0.11"			
Pipe minimum wall thickness ¹	0.0963"			
Corrosion allowance	0"			
Projection available outside vessel, Lpr	0.6867"			
Local vessel minimum thickness	0.1874"			
Liquid static head included	0 psi			
Longitudinal joint efficiency	1			
v	Velds			
Inner fillet, Leg ₄₁	0.1875"			
4				

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

UHA-51 Material Toughness Requirements Nozzle			
$t_r = rac{86.35 \cdot 0.265}{17,000 \cdot 1 - 0.6 \cdot 86.35} =$	0.0014"		
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0014 \cdot 1}{0.0963 - 0} =$	0.014		
Impact test exempt per UHA-51(g) (coincident ratio = 0.014)			
Rated MDMT =	-320°F		
Material is exempt from impact testing at the Design MDMT of -20°F.			

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG	UG-37 Area Calculation Summary (in ²)						UG-44 Sur	nmary (in)
	For P = 169.26 psi @ 300 °F				The nozzle p	asses UG-44		
A required								
This nozzle is exempt from area calculations per UG-36(c)(3)(a) 0.0625 0.0963								

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary			
Weld description Required weld throat size (in) Actual weld throat size (in) Status			
Nozzle to shell fillet (Leg ₄₁)	<u>0.0953</u>	0.1312	weld size is adequate

Calculations for internal pressure 169.26 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

- L_R = $\max [d, R_n + (t_n - C_n) + (t - C)]$
 - $\max \left[0.53, 0.265 + (0.11 0) + (0.1874 0) \right]$ =
 - 0.5624 in =

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min \left[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e \right]$$

- min $[2.5 \cdot (0.1874 0), 2.5 \cdot (0.11 0) + 0]$ =
- = 0.275 in

Nozzle required thickness per UG-27(c)(1)

t_{rn} =

 $\frac{P\cdot R_n}{S_n\cdot E - 0.6\cdot P}$ $169.2631 \cdot 0.265$ = $18,900 \cdot 1 - 0.6 \cdot 169.2631$

0.0024 in =

Required thickness t_r from UG-37(a)

$$t_{\rm r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

=
$$\frac{169.2631 \cdot 20.8125}{18,900 \cdot 1 - 0.6 \cdot 169.2631}$$

= 0.1874 in

Required thickness tr per Interpretation VIII-1-07-50

$$= \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{169.2631 \cdot 20.8125}{18,900 \cdot 0.7 - 0.6 \cdot 169.2631}$$

= 0.2683 in

tr

This opening does not require reinforcement per UG-36(c)(3)(a)

Check the weld - From UW-16(f)(3)(a)(3)(a)

$t_{a m App \ 1-1}$	=	$\frac{P \cdot R_o}{S_n \cdot E + 0.4 \cdot P} + \text{Corrosion}$
	=	$\frac{169.2631\cdot 0.375}{16,100\cdot 1+0.4\cdot 169.2631}+0$
	=	0.0039 in
t_a	=	$\max\left[t_{a\mathrm{App}\ 1\text{-}1},t_{a\mathrm{UG-}22}\right]$
	=	$\max [0.0039, 0]$
	=	0.0039 in
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{169.2631\cdot 20.8125}{18,900\cdot 1-0.6\cdot 169.2631}+0$
	=	0.1874 in
t_{b1}	=	$\max\left[t_{b1},t_{b\mathrm{UG16}}\right]$
t_{b1}	=	$\max [t_{b1}, t_{b\mathrm{UG16}}] \ \max [0.1874, 0.0625]$
t_{b1}		
t_{b1} t_b	=	$\max [0.1874, 0.0625]$
	=	max [0.1874, 0.0625] 0.1874 in
	= =	$\begin{array}{l} \max \ [0.1874, 0.0625] \\ 0.1874 \mathrm{in} \\ \min \ [t_{b3}, t_{b1}] \end{array}$
	= = =	$\begin{array}{l} \max \left[0.1874, 0.0625 \right] \\ 0.1874 \mathrm{in} \\ \min \left[t_{b3}, t_{b1} \right] \\ \min \left[0.0954, 0.1874 \right] \end{array}$
t_b	= = =	$\begin{array}{l} \max \left[0.1874, 0.0625 \right] \\ 0.1874 \mathrm{in} \\ \min \left[t_{b3}, t_{b1} \right] \\ \min \left[0.0954, 0.1874 \right] \\ 0.0954 \mathrm{in} \end{array}$

 $t_{w(\mathit{actual})} ~= 0.7 \cdot Leg = 0.7 \cdot 0.1875 = 0.1313$ in

The fillet weld size is satisfactory.

UG-44 Thickness Check - ASME B16.11 Coupling

$$egin{aligned} t_{a ext{App 1-1}} &=& rac{P \cdot R_o}{S_n \cdot E + 0.4 \cdot P} + ext{Corrosion} \ &=& rac{169.2631 \cdot 0.375}{16,100 \cdot 1 + 0.4 \cdot 169.2631} + 0 \ &=& 0.0039 \ ext{ in} \end{aligned}$$

 $t_{a\mathrm{UG-44}} = \max\left[t_{a\mathrm{App}\ 1\text{-}1},\ t_{b\mathrm{UG16}}
ight]$

 $= \max \ [0.0039, \ 0.0625]$

= <u>0.0625</u> in

Available nozzle wall thickness new, t_{n} = $0.875\cdot0.11$ = 0.0963 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG	UG-37 Area Calculation Summary (in ²)						UG-44 Sur	nmary (in)
	For P = 179.12 psi @ 70 °F				The nozzle p	asses UG-44		
A required								
This nozzle is exempt from area calculations per UG-36(c)(3)(a) 0.0625 0.0963								

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

Calculations for internal pressure 179.12 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

- L_{R} = max $[d, R_n + (t_n C_n) + (t C)]$
 - $= \max \left[0.53, 0.265 + (0.11 0) + (0.1874 0) \right]$
 - = 0.5624 in

Outer Normal Limit of reinforcement per UG-40

 $L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- = min $[2.5 \cdot (0.1874 0), 2.5 \cdot (0.11 0) + 0]$
- = 0.275 in

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$

=
$$\frac{179.1185 \cdot 0.265}{20,000 \cdot 1 - 0.6 \cdot 179.1185}$$

=
$$0.0024 \text{ in}$$

Required thickness t_r from UG-37(a)

 $t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$ = $\frac{179.1185 \cdot 20.8125}{20,000 \cdot 1 - 0.6 \cdot 179.1185}$ = 0.1874 in

Required thickness tr per Interpretation VIII-1-07-50

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

= $\frac{179.1185 \cdot 20.8125}{20,000 \cdot 0.7 - 0.6 \cdot 179.1185}$
= 0.2683 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UG-44 Thickness Check - ASME B16.11 Coupling

Available nozzle wall thickness new, t_{n} = $0.875 \cdot 0.11$ = 0.0963 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)					UG-45 Sur	nmary (in)			
	For Pe = 16.36 psi @ 300 °F				The nozzle p	asses UG-45			
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	s t _{req} t _{min}		
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a					36(c)(3)(a)	<u>0.0625</u>	0.0963	

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary			
Weld description Required weld throat size (in) Actual weld throat size (in) Status			
Nozzle to shell fillet (Leg ₄₁)	<u>0.0625</u>	0.1312	weld size is adequate

Calculations for external pressure 16.36 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[0.53, 0.265 + (0.11 0) + (0.1874 0) \right]$
- = 0.5624 in

Outer Normal Limit of reinforcement per UG-40

 $L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- = min $[2.5 \cdot (0.1874 0), 2.5 \cdot (0.11 0) + 0]$
- = 0.275 in

Nozzle required thickness per UG-28 trn = 0.0025 in

From UG-37(d)(1) required thickness $t_r = 0.1874$ in

This opening does not require reinforcement per UG-36(c)(3)(a)

Check the weld - From UW-16(f)(3)(a)(3)(a)

0.0025 in $t_{a\mathrm{UG-28}}$ = t_a $\max\left[t_{a\mathrm{UG-28}},t_{a\mathrm{UG-22}}\right]$ = $\max[0.0025, 0]$ = 0.0025 in = $\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$ t_{b2} = $\frac{16.3605\cdot 20.8125}{18,900\cdot 1-0.6\cdot 16.3605}+0$ = 0.018 in =

$t_{b\!2}$	=	$\max\left[t_{b2},t_{b\mathrm{UG16}}\right]$	
	=	$\max\ [0.018, 0.0625]$	
	=	0.0625 in	
t_b	=	$\min\ [t_{b3},t_{b2}]$	
	=	min $[0.0954, 0.0625]$	
	=	0.0625 in	
$t_{ m UG-45}$	=	$\max\ [t_a,t_b]$	
	=	$\max\ [0.0025, 0.0625]$	
	=	<u>0.0625</u> in	
$t_{w(\mathit{actual})}$	$= 0.7 \cdot 1$	$Leg = 0.7 \cdot 0.1875 = 0.1313$	in

The fillet weld size is satisfactory.

UG-45 Nozzle Neck Thickness Check

$t_{a { m UG-}28}$	=	0.0025 in
t_a	=	$\max\left[t_{a\mathrm{UG-28}},t_{a\mathrm{UG-22}}\right]$
	=	$\max[0.0025, 0]$
	=	0.0025 in
t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{16.3605\cdot 20.8125}{18,900\cdot 1-0.6\cdot 16.3605}+0$
	=	0.018 in
t_{b2}	=	$\max\left[t_{b2},t_{b\mathrm{UG16}}\right]$
	=	$\max [0.018, 0.0625]$
	=	0.0625 in
t_b	=	$\min [t_{b3},t_{b2}]$
	=	$\min\ [0.0954, 0.0625]$
	=	0.0625 in
$t_{ m UG-45}$	=	$\max\ [t_a,t_b]$
	=	$\max\ [0.0025, 0.0625]$
	=	<u>0.0625</u> in

Available nozzle wall thickness new, t_{n} = $0.875 \cdot 0.11$ = 0.0963 in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 300 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{0.69}{0.75} = 0.9200$$
$$\frac{D_o}{t} = \frac{0.75}{0.0025} = 299.2250$$

From table G: A = 0.000279From table HA-1: B = 3,671.3456 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 3,671.35}{3 \cdot (0.75/0.0025)} = 16.36 \text{ psi}$$

Design thickness for external pressure $P_a = 16.36$ psi

 $t_a = t + \text{Corrosion} = 0.0025 + 0 = 0.0025$ "

Sight Glass (P8)

ASME Section VIII D	vision 1, 2019 Edition
K 7.5	
1.75 × 4	→ → + 0.1875
↓ ↓ ↓ ↓ 0.75 ↑ 0.1874 ↑ 0.5	0,1874
Note: round inside edges per UG-76(c)	
Note: Thread engagement shall comply with	the requirements of UG-43(g).
Location an	d Orientation
Located on	Shell #1
Orientation	90°
Nozzle center line offset to datum line	78.625"
End of nozzle to shell center	21.5025"
Passes through a Category A joint	No
No	zzle
Service	Sight Glass (SG)
Description	Studding Outlet Custom Size - Contoured
Access opening	No
Material specification	SA-240 304 (II-D p. 88, In. 37)
Bolt material specification	SA-193 B7 Bolt <= 2 1/2 (II-D p. 398, In. 32)
Bolt rated MDMT	-55°F
Pad inner diameter	4"
Pad outer diameter, D _p	7.5"
Pad thickness	1.19"
Figure UG-40 thickness, t _e	0.4426"
Tapped hole diameter	0.5"
Tapped hole diameter Tapped hole depth	0.5" 0.75"
Tapped hole depth	0.75"
Tapped hole depth Tapped hole bolt circle	0.75" 6"
Tapped hole depth Tapped hole bolt circle Raised face height	0.75" 6" 0.06"
Tapped hole depth Tapped hole bolt circle Raised face height Raised face outer diameter	0.75" 6" 0.06" 4.75"
Tapped hole depthTapped hole bolt circleRaised face heightRaised face outer diameterCorrosion allowance	0.75" 6" 0.06" 4.75" 0"
Tapped hole depthTapped hole bolt circleRaised face heightRaised face outer diameterCorrosion allowanceProjection available outside vessel, Lpr	0.75" 6" 0.06" 4.75" 0" 0.4426"

Longitudinal joint efficiency	1	
Welds		
Inner fillet, Leg ₄₁	0.1875"	
Lower fillet, Leg ₄₃	0"	
Nozzle to vessel groove weld	0.1874"	

UHA-51 Material Toughness Requirements Pad		
$t_r = rac{86.35 \cdot 20.8125}{20,000 \cdot 1 - 0.6 \cdot 86.35} =$	0.0901"	
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0901 \cdot 1}{0.1874 - 0} =$	0.4807	
Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0.10%) = -320°F		
Bolts rated MDMT per Fig UCS-66 note (c) =	-55°F	
Material is exempt from impact testing at the Design MDMT of -20°F.		

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG	-37 Area	UG-45 Sumi	mary (in)					
	For P = 169.26 psi @ 300 °F The opening is adequately reinforced						The nozzle pas	ses UG-45
A required	A available	A ₁	A ₂	Α3	A ₅	A welds	t _{req}	t _{min}
<u>1.4996</u>	<u>3.2241</u>		-	<u>1.6398</u>	<u>1.5491</u>	<u>0.0352</u>	<u>0.1874</u>	1.75

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(1)

UW-16 Weld Sizing Summary					
Weld description Required weld throat size (in) Actual weld throat size (in) Status					
Pad to shell fillet (Leg_{41})	<u>0.1312</u>	0.1312	weld size is adequate		

Calculations for internal pressure 169.26 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

 $L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[4, 2 + (0) + (0.1874 0)\right]$
- = 4 in

Outer Normal Limit of reinforcement per UG-40

- $L_{H} = \min [2.5 \cdot (t C), 2.5 \cdot (t_n C_n) + t_e]$
 - $= \min \left[2.5 \cdot (0.1874 0), 2.5 \cdot (0) + 0.4426 \right]$
 - = 0.4426 in

Inner Normal Limit of reinforcement per UG-40

 $\mathsf{L}_{\mathsf{I}} = \min \left[h, 2.5 \cdot (t - C), 2.5 \cdot (t_i - C_n - C) \right]$

- = min $[0.5, 2.5 \cdot (0.1874 0), 2.5 \cdot (1.75 0 0)]$
- = 0.4685 in

Required thickness t_r from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

=
$$\frac{169.2631 \cdot 20.8125}{18,900 \cdot 1 - 0.6 \cdot 169.2631}$$

= 0.1874 in

Required thickness t_r per Interpretation VIII-1-07-50

$$t_{\rm r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

$$= \frac{169.2631 \cdot 20.8125}{18,900 \cdot 0.7 - 0.6 \cdot 169.2631}$$

= 0.2683 in

Area required per UG-37(c)

Allowable stresses: S_n = 18,900, S_v = 18,900, S_p = 18,900 psi

 f_{r1} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 f_{r4} = lesser of 1 or $\frac{S_p}{S_v}$ = 1

$$A = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1}) + \text{Tapped hole area loss}$$

= $4 \cdot 0.1874 \cdot 1 + 2 \cdot 1.75 \cdot 0.1874 \cdot 1 \cdot (1 - 1) + 0.75$

= <u>1.4996</u> in²

Area available from FIG. UG-37.1

 A_1 = larger of the following = $\underline{0}$ in²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= 4 \cdot (1 \cdot 0.1874 1 \cdot 0.1874) 2 \cdot 1.75 \cdot (1 \cdot 0.1874 1 \cdot 0.1874) \cdot (1 1)$
- $= 0 in^2$
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= 2 \cdot (0.1874 + 0) \cdot (1 \cdot 0.1874 1 \cdot 0.1874) 2 \cdot 1.75 \cdot (1 \cdot 0.1874 1 \cdot 0.1874) \cdot (1 1)$
- $= 0 in^2$

Area A₂ is not included in these calculations. A₃ = smaller of the following= 1.6398 in²

- $= 5 \cdot t \cdot t_i \cdot f_{r2}$
- = 5 · 0.1874 · 1.75 · 1
- = <u>1.6398</u> in²
- = $5 \cdot t_i \cdot t_i \cdot f_{r2}$
- = $5 \cdot 1.75 \cdot 1.75 \cdot 1$
- = <u>15.3125</u> in²
- = $2 \cdot h \cdot t_i \cdot f_{r2}$
- = $2 \cdot 0.5 \cdot 1.75 \cdot 1$
- = <u>1.75</u> in²

 $A_{42} = Leg^2 \cdot f_{r4}$

- = $0.1875^{2} \cdot 1$
- = 0.0352 in²

 $\mathsf{A}_5 \quad = \quad (D_p - \operatorname{Pad} \operatorname{ID}) \cdot t_e \cdot f_{r4}$

- = (7.5 4) \cdot 0.4426 \cdot 1
- = <u>1.5491</u> in²

 $Area = A_1 + A_3 + A_{42} + A_5$

- = 0+1.6398+0.0352+1.5491
- = <u>3.2241</u> in²

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P\cdot R_n}{S_n\cdot E - 0.6\cdot P} + \text{Corrosion}$
	=	$\frac{169.2631\cdot 2}{18,\!900\cdot 1-0.6\cdot 169.2631}+0$
	=	0.018 in
t_a	=	$\max\ [t_{a\mathrm{UG-27}},t_{a\mathrm{UG-22}}]$
	=	$\max[0.018, 0]$
	=	0.018 in
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{169.2631\cdot 20.8125}{18,900\cdot 1-0.6\cdot 169.2631}+0$
	=	0.1874 in
t_{b1}	=	$\max\left[t_{b1},t_{b\mathrm{UG16}}\right]$
	=	$\max\ [0.1874, 0.0625]$
	=	0.1874 in
t_b	=	$\min\left[t_{b3},t_{b1}\right]$
	=	min $[0.2818, 0.1874]$
	=	0.1874 in
$t_{ m UG-45}$	=	$\max\ [t_a,t_b]$
	=	$\max[0.018, 0.1874]$
	=	<u>0.1874</u> in
A		

Available nozzle wall thickness new, $t_n = 1.75$ in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG	-37 Area	UG-45 Sumi	mary (in)					
	For P = 179.12 psi @ 70 °F The opening is adequately reinforced							ses UG-45
A required	A available	A ₁	A ₂	Α3	A ₅	A welds	t _{req}	t _{min}
<u>1.4996</u>	<u>3.2241</u>			<u>1.6398</u>	<u>1.5491</u>	<u>0.0352</u>	<u>0.1874</u>	1.75

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(1)

Calculations for internal pressure 179.12 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

$$L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$$

- $= \max \left[4, 2 + (0) + (0.1874 0)\right]$
- = 4 in

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (0.1874 0), 2.5 \cdot (0) + 0.4426 \right]$
- = 0.4426 in

Inner Normal Limit of reinforcement per UG-40

$$L_{1} = \min [h, 2.5 \cdot (t - C), 2.5 \cdot (t_{i} - C_{n} - C)]$$

- $= \min \left[0.5, 2.5 \cdot (0.1874 0), 2.5 \cdot (1.75 0 0) \right]$
- = 0.4685 in

Required thickness t_r from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

=
$$\frac{179.1185 \cdot 20.8125}{20,000 \cdot 1 - 0.6 \cdot 179.1185}$$

= 0.1874 in

Required thickness t_r per Interpretation VIII-1-07-50

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{179.1185 \cdot 20.8125}{20,000 \cdot 0.7 - 0.6 \cdot 179.1185}$$
$$= 0.2683 \text{ in}$$

Area required per UG-37(c)

Allowable stresses: S_n = 20,000, S_v = 20,000, S_p = 20,000 psi

 f_{r1} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 f_{r4} = lesser of 1 or $\frac{S_p}{S_v}$ = 1

$$A = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1}) + \text{Tapped hole area loss}$$

= $4 \cdot 0.1874 \cdot 1 + 2 \cdot 1.75 \cdot 0.1874 \cdot 1 \cdot (1 - 1) + 0.75$
= $\underline{1.4996} \text{ in}^2$

Area available from FIG. UG-37.1

 $A_1 = \text{larger of the following} = 0 \text{ in}^2$

- $= \quad d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- = $4 \cdot (1 \cdot 0.1874 1 \cdot 0.1874) 2 \cdot 1.75 \cdot (1 \cdot 0.1874 1 \cdot 0.1874) \cdot (1 1)$
- $= 0 in^2$
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1-f_{r1})$
- $= 2 \cdot (0.1874 + 0) \cdot (1 \cdot 0.1874 1 \cdot 0.1874) 2 \cdot 1.75 \cdot (1 \cdot 0.1874 1 \cdot 0.1874) \cdot (1 1)$
- $= 0 in^2$

Area A₂ is not included in these calculations. A₃ = smaller of the following= 1.6398 in²

- = $5 \cdot t \cdot t_i \cdot f_{r2}$
- = 5 · 0.1874 · 1.75 · 1
- = <u>1.6398</u> in²
- = $5 \cdot t_i \cdot t_i \cdot f_{r2}$
- = $5 \cdot 1.75 \cdot 1.75 \cdot 1$
- = 15.3125 in²
- = $2 \cdot h \cdot t_i \cdot f_{r2}$
- = $2 \cdot 0.5 \cdot 1.75 \cdot 1$
- = <u>1.75</u> in²

 $A_{42} = Leg^2 \cdot f_{r4}$

- = $0.1875^{2} \cdot 1$
- = 0.0352 in²

 $\mathsf{A}_5 \quad = \quad (D_p - \operatorname{Pad} \operatorname{ID}) \cdot t_e \cdot f_{r4}$

- = (7.5 4) \cdot 0.4426 \cdot 1
- = <u>1.5491</u> in²

 $Area = A_1 + A_3 + A_{42} + A_5$

- = 0 + 1.6398 + 0.0352 + 1.5491
- = <u>3.2241</u> in²

As Area >= A the reinforcement is adequate.

$t_{a\mathrm{UG-27}}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{179.1185\cdot 2}{20,000\cdot 1-0.6\cdot 179.1185}+0$
	=	0.018 in
t_a	=	$\max\left[t_{a\mathrm{UG-27}},t_{a\mathrm{UG-22}}\right]$
	=	$\max \ [0.018, 0]$
	=	0.018 in
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{179.1185 \cdot 20.8125}{20,000 \cdot 1 - 0.6 \cdot 179.1185} + 0$
	=	0.1874 in
t_{b1}	=	$\max\left[t_{b1},t_{b\mathrm{UG16}}\right]$
	=	$\max \left[0.1874, 0.0625 \right]$
	=	max [0.1874, 0.0025] 0.1874 in
t_b		
t_b	=	0.1874 in
t_b	=	0.1874 in $\min[t_{b3}, t_{b1}]$
t_b $t_{ m UG-45}$	=	0.1874 in min $[t_{b3}, t_{b1}]$ min $[0.2818, 0.1874]$
-	= = =	0.1874 in min $[t_{b3}, t_{b1}]$ min $[0.2818, 0.1874]$ 0.1874 in
-	=	0.1874 in min $[t_{i3}, t_{b1}]$ min $[0.2818, 0.1874]$ 0.1874 in max $[t_a, t_b]$

Available nozzle wall thickness new, $t_{\textrm{n}}$ = 1.75 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAEP

UG	-37 Area (UG-45 Sumi	nary (in)					
For Pe = 16.36 psi @ 300 °F The opening is adequately reinforced							The nozzle pas	ses UG-45
A required	A available	A ₁	A ₂	Α3	A ₅	A welds	t _{req}	t _{min}
<u>1.1248</u>	<u>3.2241</u>		-	<u>1.6398</u>	<u>1.5491</u>	<u>0.0352</u>	<u>0.0625</u>	1.75

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary					
Weld description Required weld throat size (in) Actual weld throat size (in) Status					
Pad to shell fillet (Leg ₄₁)	<u>0.1312</u>	0.1312	weld size is adequate		

Calculations for external pressure 16.36 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

$$L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$$

- $= \max \left[4, 2 + (0) + (0.1874 0) \right]$
- = 4 in

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min [2.5 · (t - C), 2.5 · (t_n - C_n) + t_e]

- = min $[2.5 \cdot (0.1874 0), 2.5 \cdot (0) + 0.4426]$
- = 0.4426 in

Inner Normal Limit of reinforcement per UG-40

- $L_{I} = \min [h, 2.5 \cdot (t C), 2.5 \cdot (t_{i} C_{n} C)]$
 - = min $[0.5, 2.5 \cdot (0.1874 0), 2.5 \cdot (1.75 0 0)]$
 - = 0.4685 in

From UG-37(d)(1) required thickness t_r = 0.1874 in

Area required per UG-37(d)(1)

Allowable stresses: S_n = 18,900, S_v = 18,900, S_p = 18,900 psi

$$f_{r1} = \text{lesser of 1 or } \frac{S_n}{S_v} = 1$$
$$f_{r2} = \text{lesser of 1 or } \frac{S_n}{S_v} = 1$$
$$f_{r4} = \text{lesser of 1 or } \frac{S_p}{S_v} = 1$$

- $\mathsf{A} = 0.5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 f_{r_1})) + \text{Tapped hole area loss}$
 - = $0.5 \cdot (4 \cdot 0.1874 \cdot 1 + 2 \cdot 1.75 \cdot 0.1874 \cdot 1 \cdot (1 1)) + 0.75$
 - = <u>1.1248</u> in²

Area available from FIG. UG-37.1

 $A_1 = \text{larger of the following} = 0 \text{ in}^2$

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= 4 \cdot (1 \cdot 0.1874 1 \cdot 0.1874) 2 \cdot 1.75 \cdot (1 \cdot 0.1874 1 \cdot 0.1874) \cdot (1 1)$
- $= 0 in^2$
- $= \qquad 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1-f_{r1})$
- $= 2 \cdot (0.1874 + 0) \cdot (1 \cdot 0.1874 1 \cdot 0.1874) 2 \cdot 1.75 \cdot (1 \cdot 0.1874 1 \cdot 0.1874) \cdot (1 1)$
- $= 0 in^2$

Area A₂ is not included in these calculations. A₃ = smaller of the following= 1.6398 in²

- = $5 \cdot t \cdot t_i \cdot f_{r2}$
- = 5 · 0.1874 · 1.75 · 1
- = <u>1.6398</u> in²
- = $5 \cdot t_i \cdot t_i \cdot f_{r2}$
- = $5 \cdot 1.75 \cdot 1.75 \cdot 1$
- = <u>15.3125</u> in²
- = $2 \cdot h \cdot t_i \cdot f_{r2}$
- $= 2 \cdot 0.5 \cdot 1.75 \cdot 1$
- = <u>1.75</u> in²
- $A_{42} = Leg^2 \cdot f_{r4}$
 - = 0.1875² · 1
 - = <u>0.0352</u> in²

 $A_5 = (D_p - \text{Pad ID}) \cdot t_e \cdot f_{r_4}$

- = (7.5 4) \cdot 0.4426 \cdot 1
- = <u>1.5491</u> in²

 $Area = A_1 + A_3 + A_{42} + A_5$

= 0+1.6398+0.0352+1.5491

= <u>3.2241</u> in²

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [0.75, t_e, t] = 0.1874$ in $t_{c(\min)} = \min [0.25, 0.7 \cdot t_{\min}] = 0.1312$ in $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 0.1875 = 0.1313$ in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

$t_{a\mathrm{UG-28}}$	=	0.0127 in
t_a	=	$\max\left[t_{a\mathrm{UG-28}},t_{a\mathrm{UG-22}}\right]$
	=	$\max [0.0127, 0]$
	=	0.0127 in
t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{16.3605 \cdot 20.8125}{18,900 \cdot 1 - 0.6 \cdot 16.3605} + 0$
	=	0.018 in
$t_{b\!2}$	=	$\max\left[t_{b2},t_{b\mathrm{UG16}}\right]$
	=	$\max [0.018, 0.0625]$
	=	0.0625 in
t_b	=	$\min \; [t_{b3}, t_{b2}]$
	=	$\min [0.2818, 0.0625]$
	=	0.0625 in
$t_{ m UG-45}$	=	$\max\ [t_a,t_b]$
	=	$\max\ [0.0127, 0.0625]$
	=	<u>0.0625</u> in
ماطعانه	nozzl	a wall thickness new $t = 1.75$ in

UG-45 Nozzle Neck Thickness Check

Available nozzle wall thickness new, $t_{\rm n}$ = 1.75 in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 300 °F) UG-28(c)

 $\frac{L}{D_o} = \frac{0.8401}{7.5} = 0.1120$ $\frac{D_o}{t} = \frac{7.5}{0.0127} = 591.8222$

From table G: A = 0.000969From table HA-1: B = 7,261.6484 psi

 $P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 7,261.65}{3 \cdot (7.5/0.0127)} = 16.36 \text{ psi}$

Design thickness for external pressure $P_a = 16.36$ psi

 $t_a = t + \text{Corrosion} = 0.0127 + 0 = 0.0127$ "

Shell #2

ASME Section VIII Division 1, 2019 Edition						
Com	ponent	Cylinder				
Ма	terial	SA-240 304 (II-D p. 88, In. 37)				
Impact Tested			PWHT	Maximize MDMT/ No MAWP		
No	No	No	No	No		
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)		
Int	ernal	25	300	-20		
Ext	ternal	15	300	-20		
	Static Liquid Head					
Cor	Condition		H _s (in)	SG		
Оре	erating	0.17	4.8125	1		
Test h	orizontal	1.62 44.8125		1		
		Dimensio	ns			
Inner I	Diameter	41.625"				
Le	ngth	21.5"				
Nominal	Thickness	0.1874"				
Corrosion	Inner	0"				
Corrosion	Outer	0"				
		Weight and C	apacity			
		Weight (lb)		Capacity (US gal)		
N	lew	148.47		70.41		
Cor	roded	148.47 70.41				
		Radiograp	ohy			
Longitu	dinal seam	None UW-11(c) Type 1				
Left Circum	ferential seam	None UW-11(c) Type 1				
Right Circum	nferential seam	None UW-11(c) Type 1				

Results Summary	
Governing condition	External pressure
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"
Design thickness due to internal pressure (t)	<u>0.0397"</u>
Design thickness due to external pressure (t_e)	<u>0.1667"</u>
Maximum allowable working pressure (MAWP)	<u>118.31 psi</u>
Maximum allowable pressure (MAP)	<u>125.38 psi</u>
Maximum allowable external pressure (MAEP)	<u>20.53 psi</u>
Rated MDMT	-320 °F

UHA-51 Material Toughness Requirements				
$t_r = rac{86.52 \cdot 20.8125}{20,000 \cdot 0.7 - 0.6 \cdot 86.52} =$	0.1291"			
Stress ratio $= rac{t_r \cdot E^*}{t_n - c} = rac{0.1291 \cdot 0.8}{0.1874 - 0} =$	0.5511			
Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0.10%) = -320°F				
Material is exempt from impact testing at the Design MDMT	of -20°F.			

Design thickness, (at 300 °F) UG-27(c)(1)

 $t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{25.17 \cdot 20.8125}{18,900 \cdot 0.70 - 0.60 \cdot 25.17} + 0 = \underline{0.0397}"$

Maximum allowable working pressure, (at 300 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{18,900 \cdot 0.70 \cdot 0.1874}{20.8125 + 0.60 \cdot 0.1874} - 0.17 = \underline{118.31} \text{ psi}$$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{20,000 \cdot 0.70 \cdot 0.1874}{20.8125 + 0.60 \cdot 0.1874} = \underline{125.38} \text{ psi}$$

External Pressure, (Corroded & at 300 °F) UG-28(c)

 $\frac{L}{D_o} = \frac{63.6625}{41.9998} = 1.5158$ $\frac{D_o}{t} = \frac{41.9998}{0.1667} = 252.0221$

From table G: A = 0.000215From table HA-1: B = 2,835.245 psi

 $P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 2,\!835.25}{3 \cdot (41.9998/0.1667)} = 15 \ \mathrm{psi}$

Design thickness for external pressure $P_a = 15$ psi

 $t_a = t + \text{Corrosion} = 0.1667 + 0 = 0.1667$ "

Maximum Allowable External Pressure, (Corroded & at 300 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{63.6625}{41.9998} = 1.5158$$
$$\frac{D_o}{t} = \frac{41.9998}{0.1874} = 224.1185$$

From table G: A = 0.000262From table HA-1: B = 3,451.429 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 3,451.43}{3 \cdot (41.9998/0.1874)} = rac{20.53}{20.53} \ {
m psi}$$

% Forming strain - UHA-44(a)(2)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 0.1874}{20.9062}\right) \cdot \left(1 - \frac{20.9062}{\infty}\right) = 0.4482\%$$

Allowable Compressive Stress, Hot and Corroded- $\rm S_{cHC},$ (table HA-1)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{20.9999/0.1874} = 0.001115$$
$$B = 7,619 \text{ psi}$$
$$S = \frac{18,900}{1.00} = 18,900 \text{ psi}$$

 $S_{c\!H\!C}~=~\min{\left(B,S
ight)}=$ 7,619 psi

Allowable Compressive Stress, Hot and New- $\mathsf{S}_{\mathsf{CHN}}$

 $S_cHN = S_cHC = 7,619$ psi

Allowable Compressive Stress, Cold and New- S_{cCN}, (table HA-1)

$$\begin{split} A &= \frac{0.125}{R_o/t} = \frac{0.125}{20.9999/0.1874} = 0.001115\\ B &= 9,371 \ \text{psi}\\ S &= \frac{20,000}{1.00} = 20,000 \ \text{psi}\\ S_{cCN} &= \min \ (B,S) = 9,371 \ \text{psi} \end{split}$$

Allowable Compressive Stress, Cold and Corroded- \mathbf{S}_{cCC}

 $S_{c\mathbb{C}}~=S_{cCN}~=9{,}371~\mathrm{psi}$

Allowable Compressive Stress, Vacuum and Corroded- S_{cVC}, (table HA-1)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{20.9999/0.1874} = 0.001115$$
$$B = 7{,}619 \text{ psi}$$

$$S = \frac{18,900}{1.00} = 18,900$$
 psi

 $S_{c\!V\!C}\ =\ \min\ (B,S\,)=$ 7,619 psi

Press Relief (P3)

ASME Section VIII	Division 1, 2019 Edition				
Note: round inside edges per UG-76(c)					
	nd Orientation				
Located on	Shell #2				
Orientation	0°				
Nozzle center line offset to datum line	30.625"				
End of nozzle to shell center	21.8011"				
Passes through a Category A joint	No				
N	ozzle				
Service	Pressure Relief Valve (PRV)				
Description	NPS 0.75 Class 3000 - Threaded Half Coupling				
Access opening	No				
Material specification	SA-312 TP304 WId pipe (II-D p. 92, In. 3)				
Inside diameter, new	1.06"				
Pipe nominal wall thickness	0.16"				
Pipe minimum wall thickness ¹	0.14"				
Corrosion allowance	0"				
Projection available outside vessel, Lpr	0.8012"				
Local vessel minimum thickness	0.1874"				
Liquid static head included	0 psi				
Longitudinal joint efficiency	1				
v	Velds				
Inner fillet, Leg ₄₁	0.1875"				
Nozzle to vessel groove weld	0.1874"				
	9				

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

UHA-51 Material Toughness Requirements Nozzle				
$t_r = rac{86.35 \cdot 0.53}{17,000 \cdot 1 - 0.6 \cdot 86.35} =$	0.0027"			
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0027 \cdot 1}{0.14 - 0} =$	0.0193			
Impact test exempt per UHA-51(g) (coincident ratio = 0.0193)				
Rated MDMT =	-320°F			
Material is exempt from impact testing at the Design MI	DMT of -20°F.			

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)					UG-44 Sumi	mary (in)		
For P = 169.26 psi @ 300 °F					The nozzle pas	sses UG-44		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
This nozzle is	exempt from a	irea ca	alculat	ions pe	er UG-	36(c)(3)(a)	<u>0.0625</u>	0.14

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary							
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status				
Nozzle to shell fillet (Leg ₄₁)	<u>0.0937</u>	0.1312	weld size is adequate				

Calculations for internal pressure 169.26 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

- $L_{R} = \max [d, R_n + (t_n C_n) + (t C)]$
 - $= \max \left[1.06, 0.53 + (0.16 0) + (0.1874 0) \right]$
 - = 1.06 in

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min \left[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e \right]$$

- = min $[2.5 \cdot (0.1874 0), 2.5 \cdot (0.16 0) + 0]$
- = 0.4 in

Nozzle required thickness per UG-27(c)(1)

 $t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$

- $= \frac{169.2631 \cdot 0.53}{18,900 \cdot 1 0.6 \cdot 169.2631}$
- = 0.0048 in

Required thickness tr from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

=
$$\frac{169.2631 \cdot 20.8125}{18,900 \cdot 1 - 0.6 \cdot 169.2631}$$

= 0.1874 in

Required thickness tr per Interpretation VIII-1-07-50

$$= \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{169.2631 \cdot 20.8125}{18,900 \cdot 0.7 - 0.6 \cdot 169.2631}$$

= 0.2683 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

tr

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-44 Thickness Check - ASME B16.11 Coupling

 $= \max \ [0.0072, \ \ 0.0625]$

$$=$$
 0.0625 in

Available nozzle wall thickness new, t_{n} = $0.875 \cdot 0.16$ = 0.14 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)						UG-44 Sumi	mary (in)	
For P = 179.12 psi @ 70 °F					The nozzle pas	ses UG-44		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
This nozzle is	exempt from a	irea ca	alculati	ions pe	er UG-	36(c)(3)(a)	<u>0.0625</u>	0.14

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

Calculations for internal pressure 179.12 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

- L_{R} = max $[d, R_n + (t_n C_n) + (t C)]$
 - $= \max \left[1.06, 0.53 + (0.16 0) + (0.1874 0) \right]$
 - = 1.06 in

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2.5 \cdot (0.1874 0), 2.5 \cdot (0.16 0) + 0 \right]$
- = 0.4 in

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$

= $\frac{179.1185 \cdot 0.53}{20,000 \cdot 1 - 0.6 \cdot 179.1185}$
= 0.0048 in

Required thickness t_r from UG-37(a)

 $t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$ = $\frac{179.1185 \cdot 20.8125}{20,000 \cdot 1 - 0.6 \cdot 179.1185}$ = 0.1874 in

Required thickness tr per Interpretation VIII-1-07-50

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

= $\frac{179.1185 \cdot 20.8125}{20,000 \cdot 0.7 - 0.6 \cdot 179.1185}$
= 0.2683 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UG-44 Thickness Check - ASME B16.11 Coupling

Available nozzle wall thickness new, $t_{\textrm{n}}$ = $0.875 \cdot 0.16$ = 0.14 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)						UG-45 Sumi	mary (in)	
For Pe = 20.53 psi @ 300 °F					The nozzle pas	sses UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
This nozzle is	exempt from a	irea ca	alculat	ions pe	er UG-	36(c)(3)(a)	<u>0.0625</u>	0.14

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status				
Nozzle to shell fillet (Leg ₄₁)	<u>0.0937</u>	0.1312	weld size is adequate				

Calculations for external pressure 20.53 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[1.06, 0.53 + (0.16 0) + (0.1874 0) \right]$
- = 1.06 in

Outer Normal Limit of reinforcement per UG-40

 $L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- = min $[2.5 \cdot (0.1874 0), 2.5 \cdot (0.16 0) + 0]$
- = 0.4 in

Nozzle required thickness per UG-28 trn = 0.0041 in

From UG-37(d)(1) required thickness t_r = 0.1874 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [0.75, t_n, t] = 0.16$ in $t_{c(\min)} = \min [0.09375, 0.7 \cdot t_{\min}] = 0.0937$ in $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 0.1875 = 0.1313$ in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a { m UG-} 28}$	=	0.0041 in
t_a	=	$\max\left[t_{a\mathrm{UG-28}},t_{a\mathrm{UG-22}}\right]$
	=	$\max[0.0041, 0]$
	=	0.0041 in

t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{20.5334\cdot 20.8125}{18,900\cdot 1-0.6\cdot 20.5334}+0$
	=	0.0226 in
t_{b2}	=	$\max\left[t_{b2},t_{b\mathrm{UG16}}\right]$
	=	$\max\ [0.0226, 0.0625]$
	=	0.0625 in
t_b	=	$\min \left[t_{b3} , t_{b2} \right]$
	=	$\min\ [0.1225, 0.0625]$
	=	0.0625 in
$t_{ m UG-45}$	=	$\max\ [t_a,t_b]$
	=	$\max\ [0.0041, 0.0625]$
	=	<u>0.0625</u> in

Available nozzle wall thickness new, $t_{\textrm{n}}$ = $0.875 \cdot 0.16$ = 0.14 in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 300 °F) UG-28(c)

 $\frac{L}{D_o} = \frac{0.8125}{1.38} = 0.5888$ $\frac{D_o}{t} = \frac{1.38}{0.0041} = 333.5423$

From table G: A = 0.000389From table HA-1: B = 5,137.1212 psi

 $P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 5{,}137{.}12}{3 \cdot (1{.}38/0{.}0041)} = 20.54 \ \, \mathrm{psi}$

Design thickness for external pressure $P_a = 20.54$ psi

 $t_a = t + \text{Corrosion} = 0.0041 + 0 = 0.0041$ "

SS Vapor Inlet (P1)

Orientation 13 Nozzle center line offset to datum line 30 End of nozzle to shell center 27 Passes through a Category A joint Nozzle Service In Description Noz Material specification Sr Inside diameter, new 10	nell #2 5° 0.375" 7.1874"
0,1339 0,1672 0,1672 0,1672 1,167 0,1672 1,167 0,1672 1,167 0,1672 1,167 0,1672 1,167 0,1672 1,167 0,1672 1,167 1,167 1,167 1,167 1,167 1,167 1,167 1,167 1,167	0.1874 0.1874 0.1874 0.1874 0.1874 12 15° 0.375" 1.1874"
0,1672 0,1672 0,1672 0,1672 Note: round inside edges per UG-76(c) Inside edges per UG-76(c) Located on Service Orientation 13 Nozzle center line offset to datum line 30 End of nozzle to shell center 27 Passes through a Category A joint Noz Service Ini Description Ni Access opening Ni Material specification Service Inside diameter, new 10	0.1874 0.1874 0.1874 0.1874 0.1874 12 15° 0.375" 1.1874"
0,1672 Image: Constraint of the section of the sec	ientation hell #2 0.375" 7.1874"
Location and UrLocated onSIOrientation13Nozzle center line offset to datum line30End of nozzle to shell center27Passes through a Category A jointNoNozzleInDescriptionInAccess openingNoMaterial specificationSIInside diameter, new10	nell #2 5° 0.375" 7.1874"
Located onSiteOrientation13Nozzle center line offset to datum line30End of nozzle to shell center27Passes through a Category A jointNoServiceInDescriptionNoAccess openingNoMaterial specificationSiteInside diameter, new10	nell #2 5° 0.375" 7.1874"
Orientation 13 Nozzle center line offset to datum line 30 End of nozzle to shell center 27 Passes through a Category A joint Nozzle Service In Description Noz Material specification Sr Inside diameter, new 10	25° 0.375" 7.1874"
Nozzle center line offset to datum line30End of nozzle to shell center27Passes through a Category A jointNoServiceInDescriptionNoAccess openingNoMaterial specificationS/Inside diameter, new10).375" '.1874"
End of nozzle to shell center 27 Passes through a Category A joint No Nozzle No Service In Description No Access opening No Material specification Sr Inside diameter, new 10	·.1874"
Passes through a Category A joint No Nozz In Service In Description No Access opening No Material specification S/ Inside diameter, new 10	-
Nozzle Service Initial Specification Access opening Notest and the specification Material specification SA Inside diameter, new 10	
ServiceInDescriptionNIAccess openingNIMaterial specificationS/Inside diameter, new10	,
Description NI Access opening No Material specification S/ Inside diameter, new 10	
Access opening No Material specification S/ Inside diameter, new 10	et (IN)
Material specification S/ Inside diameter, new 10	PS 10 Sch 10S
Inside diameter, new 10)
	A-312 TP304 Wld pipe (II-D p. 92, In. 3)
Pipe nominal wall thickness0.).42"
	165"
Pipe minimum wall thickness ¹ 0.	1444"
Corrosion allowance 0"	
Projection available outside vessel, Lpr 6.	1875"
Local vessel minimum thickness 0.	1874"
Liquid static head included 0	psi
Longitudinal joint efficiency 1	
Reinforcing	Pad
Material specification S/	A-240 304L (II-D p. 84, ln. 33)
Diameter, D _p 14	.3158"
Thickness, t _e 0.	1672"
Is split No)
Welds	
Inner fillet, Leg ₄₁ 0.	
Outer fillet, Leg ₄₂ 0.	1875"

Nozzle to vessel groove weld	0.1874"
Pad groove weld	0.1672"

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

UHA-51 Material Toughness Requirements Nozzle				
$t_r = rac{86.35 \cdot 5.21}{17,000 \cdot 1 - 0.6 \cdot 86.35} =$	0.0265"			
$egin{aligned} { m Stress ratio} = rac{{t_r} \cdot {E^*}}{{t_n} - c} = rac{{0.0265 \cdot 1}}{{0.1444} - 0} = \ \end{aligned}$	0.1839			
Impact test exempt per UHA-51(g) (coincident ratio	= 0.1839)			
Rated MDMT =	-320°F			
Material is exempt from impact testing at the Design MD	MT of -20°F.			

UHA-51 Material Toughness Requirements Pad					
$t_r = rac{86.35 \cdot 20.8125}{20,000 \cdot 1 - 0.6 \cdot 86.35} =$	0.0901"				
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0901 \cdot 1}{0.1874 - 0} =$	0.4807				
Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0.10%) = -320°F					
Material is exempt from impact testing at the Design MDMT of -20°F.					

Reinforcement Calculations for MAWP

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)						UG-45 Sur	nmary (in)	
For P = 115.1 psi @ 300 °F The opening is adequately reinforced					The nozzle p	asses UG-45		
A required	A available	A ₁	A ₂	A ₃	А ₅	A welds	t _{req}	t _{min}
<u>1.3255</u>	<u>1.3257</u>	<u>0.6272</u>	<u>0.1248</u>		<u>0.5268</u>	<u>0.0469</u>	<u>0.1272</u>	0.1444

UG-41 Weld Failure Path Analysis Summary (lb _f)							
All failure paths are stronger than the applicable weld loads							
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength	
<u>13,573.81</u>	<u>13,201.72</u>	<u>55,557.83</u>	<u>4,115.32</u>	<u>104,126.57</u>	<u>14,370.54</u>	<u>68,897.28</u>	

UW-16 Weld Sizing Summary						
Weld description	Required weld size (in)	Actual weld size (in)	Status			
Nozzle to pad fillet (Leg ₄₁)	<u>0.1155</u>	0.1312	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	<u>0.0836</u>	0.0937	weld size is adequate			

Calculations for internal pressure 115.1 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

 $L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[10.42, 5.21 + (0.165 0) + (0.1874 0) \right]$
- = 10.42 in

Outer Normal Limit of reinforcement per UG-40

 $L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (0.1874 0), 2.5 \cdot (0.165 0) + 0.1672 \right]$
- = 0.4685 in

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$
$$= \frac{115.0967 \cdot 5.21}{18,900 \cdot 1 - 0.6 \cdot 115.0967}$$
$$= 0.0318 \text{ in}$$

Required thickness t_r from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

= $\frac{115.0967 \cdot 20.8125}{18,900 \cdot 1 - 0.6 \cdot 115.0967}$
= 0.1272 in

$$t_{\rm r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

= $\frac{115.0967 \cdot 20.8125}{18,900 \cdot 0.7 - 0.6 \cdot 115.0967}$
= 0.182 in

Area required per UG-37(c)

Allowable stresses: S_n = 18,900, S_v = 18,900, S_p = 16,700 psi

$$f_{r1} = \text{lesser of 1 or } \frac{S_n}{S_v} = 1$$

$$f_{r2} = \text{lesser of 1 or } \frac{S_n}{S_v} = 1$$

$$f_{r3} = \text{lesser of } f_{r2} \text{ or } \frac{S_p}{S_v} = 0.8836$$

$$f_{r4}$$
 = lesser of 1 or $\frac{S_p}{S_v}$ = 0.8836

$$A = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$$

= 10.42 \cdot 0.1272 \cdot 1 + 2 \cdot 0.165 \cdot 0.1272 \cdot 1 \cdot (1 - 1)
= 1.3255 in²

Area available from FIG. UG-37.1

 A_1 = larger of the following = <u>0.6272</u> in²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= 10.42 \cdot (1 \cdot 0.1874 1 \cdot 0.1272) 2 \cdot 0.165 \cdot (1 \cdot 0.1874 1 \cdot 0.1272) \cdot (1 1)$
- = 0.6272 in²
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= 2 \cdot (0.1874 + 0.165) \cdot (1 \cdot 0.1874 1 \cdot 0.1272) 2 \cdot 0.165 \cdot (1 \cdot 0.1874 1 \cdot 0.1272) \cdot (1 1)$
- = 0.0424 in²

 A_2 = smaller of the following= <u>0.1248</u> in²

$$= 5 \cdot (t_n - t_{rn}) \cdot f_{r2} \cdot t$$

- $= 5 \cdot (0.165 0.0318) \cdot 1 \cdot 0.1874$
- = 0.1248 in²
- $= 2 \cdot (t_n t_{rn}) \cdot (2.5 \cdot t_n + t_e) \cdot f_{r2}$
- = $2 \cdot (0.165 0.0318) \cdot (2.5 \cdot 0.165 + 0.1672) \cdot 1$
- = 0.1544 in²

 $A_{41} = Leg^2 \cdot f_{r3}$

- = 0.1875 $^{2} \cdot 0.8836$
- = <u>0.0311</u> in²

 $A_{42} = Leg^2 \cdot f_{r4}$

- = 0.1339² · 0.8836
- = <u>0.0158</u> in²

 $\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$

- $= (14.3158 10.42 2 \cdot 0.165) \cdot 0.1672 \cdot 0.8836$
- = <u>0.5268</u> in²

 $Area = A_1 + A_2 + A_{41} + A_{42} + A_5$ = 0.6272 + 0.1248 + 0.0311 + 0.0158 + 0.5268 = <u>1.3257</u> in²

As Area >= A the reinforcement is adequate.

UW-16(c)(2) Weld Check

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{115.2131\cdot 5.21}{16,100\cdot 1-0.6\cdot 115.2131}+0$
	=	0.0374 in
t_a	=	$\max\left[t_{a\mathrm{UG-27}},t_{a\mathrm{UG-22}}\right]$
	-	$\max [0.0374, 0]$
	=	0.0374 in
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{115.0967\cdot 20.8125}{18,900\cdot 1-0.6\cdot 115.0967}+0$
	=	0.1272 in
t_{b1}	=	$\max\left[t_{b1},t_{b\mathrm{UG16}}\right]$
	=	$\max\ [0.1272, 0.0625]$

= 0.1272 in

 t_b $\min[t_{b3}, t_{b1}]$ =

min [0.3194, 0.1272]

0.1272 in

 $t_{
m UG-45}$ $\max[t_a, t_b]$

> max [0.0374, 0.1272] =

<u>0.1272</u> in =

Available nozzle wall thickness new, t_{n} = $0.875\cdot0.165$ = 0.1444 in

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension:	0.74 · 18,900 = 13,986 psi
Nozzle wall in shear:	0.7 · 16,100 = 11,270 psi
Inner fillet weld in shear:	0.49 · 16,100 = 7,889 psi
Outer fillet weld in shear:	0.49 · 16,700 = 8,183 psi
Upper groove weld in tension:	0.74 · 16,700 = 12,358 psi

Strength of welded joints:

(1) Inner fillet weld in shear $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_i = \frac{\pi}{2} \cdot 10.75 \cdot 0.1875 \cdot 7,889 = 24,977.65 \text{ lb}_{\text{f}}$

(2) Outer fillet weld in shear $\frac{\pi}{2} \cdot \text{Pad OD} \cdot \text{Leg} \cdot S_o = \frac{\pi}{2} \cdot 14.3158 \cdot 0.1339 \cdot 8,183 = 24,639.31 \text{ lb}_{f}$

(3) Nozzle wall in shear $\frac{\pi}{2} \cdot \text{Mean nozzle dia} \cdot t_n \cdot S_n = \frac{\pi}{2} \cdot 10.585 \cdot 0.165 \cdot 11,270 = 30,918.51 \text{ lb}_{\text{f}}$

(4) Groove weld in tension $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 10.75 \cdot 0.1874 \cdot 13,986 = 44,257.97 \text{ lb}_{\text{f}}$

(6) Upper groove weld in tension $\frac{\pi}{2}\cdot \text{Nozzle} \, \text{OD} \cdot t_w \cdot S_g = \frac{\pi}{2}\cdot 10.75\cdot 0.1672\cdot 12{,}358$ = 34,890.95 lbf

Loading on welds per UG-41(b)(1)

$$W = (A - A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t - F \cdot t_r)) \cdot S_v$$

= (1.3255 - 0.6272 + 2 \cdot 0.165 \cdot 1 \cdot (1 \cdot 0.1874 - 1 \cdot 0.1272)) \cdot 18,900
= 13.573.81 lb_f

 $W_{1-1} = (A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- $(0.1248 + 0.5268 + 0.0311 + 0.0158) \cdot 18,900$ =
- <u>13,201.72</u> lb_f =

 $W_{2-2} = (A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r_1}) \cdot S_v$

- $(0.1248 + 0 + 0.0311 + 0 + 2 \cdot 0.165 \cdot 0.1874 \cdot 1) \cdot 18,900$ =
- 4,115.32 lbf =

 $W_{3-3} = (A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r_1}) \cdot S_v$

- $= (0.1248 + 0 + 0.5268 + 0.0311 + 0.0158 + 0 + 2 \cdot 0.165 \cdot 0.1874 \cdot 1) \cdot 18,900$
- = <u>14,370.54</u> lb_f

Load for path 1-1 lesser of W or $W_{1-1} = 13,201.72 \text{ lb}_{f}$ Path 1-1 through (2) & (3) = 24,639.31 + 30,918.51 = <u>55,557.83 lb_{f}</u> Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or $W_{2-2} = 4,115.32 \text{ lb}_f$ Path 2-2 through (1), (4), (6) = 24,977.65 + 44,257.97 + 34,890.95 = <u>104,126.57</u> lb_f Path 2-2 is stronger than W_{2-2} so it is acceptable per UG-41(b)(1).

Load for path 3-3 lesser of W or $W_{3-3} = 13,573.81 \text{ lb}_f$ Path 3-3 through (2), (4) = 24,639.31 + 44,257.97 = <u>68,897.28 lb_f</u> Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)						UG-45 Sur	nmary (in)	
	For P = 120.38 psi @ 70 °F The opening is adequately reinforced						The nozzle p	asses UG-45
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
<u>1.31</u>	<u>1.31</u>	<u>0.6427</u>	<u>0.1251</u>		<u>0.4978</u>	<u>0.0444</u>	<u>0.1257</u>	0.1444

UG-41 Weld Failure Path Analysis Summary (Ib _f)							
All failure paths are stronger than the applicable weld loads							
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength	
13,753.14	<u>13,346.57</u>	<u>57,286.19</u>	4,326.84	<u>107,633.27</u>	<u>14,583.41</u>	<u>71,473.14</u>	

Calculations for internal pressure 120.38 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_n + (t_n - C_n) + (t - C)]$

- = $\max [10.42, 5.21 + (0.165 0) + (0.1874 0)]$
- = 10.42 in

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min [2.5 · (t - C), 2.5 · (t_n - C_n) + t_e]

- $= \min \left[2.5 \cdot (0.1874 0), 2.5 \cdot (0.165 0) + 0.1672 \right]$
- = 0.4685 in

Nozzle required thickness per UG-27(c)(1)

t_{rn} =

 $rac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$

- $= \frac{120.3763 \cdot 5.21}{20,000 \cdot 1 0.6 \cdot 120.3763}$
- = 0.0315 in

Required thickness t_r from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{120.3763 \cdot 20.8125}{20.8125}$$

$$= \frac{120.3703 \cdot 20.8123}{20,000 \cdot 1 - 0.6 \cdot 120.3763}$$

= 0.1257 in

Required thickness tr per Interpretation VIII-1-07-50

$$= \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{120.3763 \cdot 20.8125}{20,000 \cdot 0.7 - 0.6 \cdot 120.3763}$$

= 0.1799 in

tr

Area required per UG-37(c)

Allowable stresses: S_n = 20,000, S_v = 20,000, S_p = 16,700 psi

$$f_{r1} = \text{lesser of 1 or } \frac{S_n}{S_v} = 1$$

$$f_{r2} = \text{lesser of 1 or } \frac{S_n}{S_v} = 1$$

$$f_{r3} = \text{lesser of } f_{r2} \text{ or } \frac{S_p}{S_v} = 0.835$$

$$f_{r4} = \text{lesser of 1 or } \frac{S_p}{S_v} = 0.835$$

$$A = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$$

$$= 10.42 \cdot 0.1257 \cdot 1 + 2 \cdot 0.165 \cdot 0.1257 \cdot 1 \cdot (1 - 1)$$

$$= 1.31 \text{ in}^2$$

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>0.6427</u> in²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= \quad 10.42 \cdot (1 \cdot 0.1874 1 \cdot 0.1257) 2 \cdot 0.165 \cdot (1 \cdot 0.1874 1 \cdot 0.1257) \cdot (1 1)$
- = 0.6427 in²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= 2 \cdot (0.1874 + 0.165) \cdot (1 \cdot 0.1874 1 \cdot 0.1257) 2 \cdot 0.165 \cdot (1 \cdot 0.1874 1 \cdot 0.1257) \cdot (1 1)$
- = 0.0435 in²

 A_2 = smaller of the following= <u>0.1251</u> in²

- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= 5 \cdot (0.165 0.0315) \cdot 1 \cdot 0.1874$
- = 0.1251 in²
- $= 2 \cdot (t_n t_{rn}) \cdot (2.5 \cdot t_n + t_e) \cdot f_{r2}$
- = $2 \cdot (0.165 0.0315) \cdot (2.5 \cdot 0.165 + 0.1672) \cdot 1$
- = 0.1548 in²

 $A_{41} = Leg^2 \cdot f_{r3}$

- = $0.1875^2 \cdot 0.835$
- = 0.0294 in²

 $A_{42} = Leg^2 \cdot f_{r4}$

- = 0.1339² · 0.835
- = <u>0.015</u> in²

$$\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r_4}$$

- $= (14.3158 10.42 2 \cdot 0.165) \cdot 0.1672 \cdot 0.835$
- = <u>0.4978</u> in²

 $Area = A_1 + A_2 + A_{41} + A_{42} + A_5$

- = 0.6427 + 0.1251 + 0.0294 + 0.015 + 0.4978
- = <u>1.31</u> in²

As Area >= A the reinforcement is adequate.

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P\cdot R_n}{S_n\cdot E - 0.6\cdot P} + \text{Corrosion}$
	=	$\frac{120.3763 \cdot 5.21}{17,000 \cdot 1 - 0.6 \cdot 120.3763} + 0$
	=	0.037 in
t_a	=	$\max\left[t_{a\mathrm{UG-27}},t_{a\mathrm{UG-22}}\right]$
	=	$\max[0.037, 0]$
	=	0.037 in
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{120.3763 \cdot 20.8125}{20,000 \cdot 1 - 0.6 \cdot 120.3763} + 0$
	=	0.1257 in
t_{b1}	=	$0.1257~{ m in} \ \max{[t_{b1},t_{b{ m UG16}}]}$
t_{b1}		
t_{b1}	=	$\max\left[t_{b1},t_{b\mathrm{UG16}}\right]$
t_{b1}	=	$\max \left[t_{b1}, t_{b \mathrm{UG16}} ight] \ \max \left[0.1257, 0.0625 ight]$
	=	$\max[t_{b1}, t_{b\mathrm{UG16}}]$ $\max[0.1257, 0.0625]$ 0.1257 in
	=	$\max [t_{b1}, t_{b\text{UG16}}]$ $\max [0.1257, 0.0625]$ 0.1257 in $\min [t_{b3}, t_{b1}]$
	=	$\begin{array}{l} \max \left[t_{b1}, t_{b\mathrm{UG16}} \right] \\ \max \left[0.1257, 0.0625 \right] \\ 0.1257 \mathrm{in} \\ \min \left[t_{b3}, t_{b1} \right] \\ \min \left[0.3194, 0.1257 \right] \end{array}$
t_b	=	$\begin{array}{l} \max \left[t_{b1}, t_{b\mathrm{UG16}} \right] \\ \max \left[0.1257, 0.0625 \right] \\ 0.1257 \mathrm{in} \\ \min \left[t_{b3}, t_{b1} \right] \\ \min \left[0.3194, 0.1257 \right] \\ 0.1257 \mathrm{in} \end{array}$

Available nozzle wall thickness new, t_{n} = $0.875\cdot0.165$ = 0.1444 in

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension:	$0.74 \cdot 20,000 =$	14,800 psi
Nozzle wall in shear:	0.7 · 17,000 =	11,900 psi
Inner fillet weld in shear:	$0.49 \cdot 16,700 =$	8,183 psi
Outer fillet weld in shear:	$0.49 \cdot 16,700 =$	8,183 psi
Upper groove weld in tension:	0.74 · 16,700 =	12,358 psi

Strength of welded joints:

(1) Inner fillet weld in shear $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_i = \frac{\pi}{2} \cdot 10.75 \cdot 0.1875 \cdot 8,183 = 25,908.49 \text{ lb}_{\text{f}}$

(2) Outer fillet weld in shear

 $\frac{\pi}{2} \cdot \text{Pad OD} \cdot \text{Leg} \cdot S_o = \frac{\pi}{2} \cdot 14.3158 \cdot 0.1339 \cdot 8,183 = 24,639.31 \text{ lb}_{\text{f}}$

(3) Nozzle wall in shear

 $\frac{\pi}{2}$ · Mean nozzle dia · t_n · $S_n = \frac{\pi}{2}$ · 10.585 · 0.165 · 11,900 = 32,646.88 lbf

(4) Groove weld in tension

 $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 10.75 \cdot 0.1874 \cdot 14,\!800 = \textbf{46},\!\textbf{833.83} \; \texttt{lb}_{\mathsf{f}}$

(6) Upper groove weld in tension $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 10.75 \cdot 0.1672 \cdot 12,358 = 34,890.95 \text{ lb}_{\text{f}}$

Loading on welds per UG-41(b)(1)

$$W = (A - A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t - F \cdot t_r)) \cdot S_v$$

= (1.31 - 0.6427 + 2 \cdot 0.165 \cdot 1 \cdot (1 \cdot 0.1874 - 1 \cdot 0.1257)) \cdot 20,000
= 13.753.14 lbf

 $W_{1-1} = (A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- $= (0.1251 + 0.4978 + 0.0294 + 0.015) \cdot 20,000$
- = <u>13,346.57</u> lb_f

 $W_{2-2} = (A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- $= (0.1251 + 0 + 0.0294 + 0 + 2 \cdot 0.165 \cdot 0.1874 \cdot 1) \cdot 20,000$
- = <u>4,326.84</u> lb_f

 $\mathsf{W}_{\textbf{3-3}} = (A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- $= (0.1251 + 0 + 0.4978 + 0.0294 + 0.015 + 0 + 2 \cdot 0.165 \cdot 0.1874 \cdot 1) \cdot 20,000$
- = <u>14,583.41</u> lb_f

Load for path 1-1 lesser of W or $W_{1-1} = 13,346.57 \text{ lb}_{f}$ Path 1-1 through (2) & (3) = 24,639.31 + 32,646.88 = <u>57,286.19 lb_{f}</u> Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or $W_{2-2} = 4,326.84 \text{ lb}_f$ Path 2-2 through (1), (4), (6) = 25,908.49 + 46,833.83 + 34,890.95 = <u>107,633.27</u> lb_f Path 2-2 is stronger than W_{2-2} so it is acceptable per UG-41(b)(1).

Load for path 3-3 lesser of W or $W_{3-3} = 13,753.14 \text{ lb}_{f}$ Path 3-3 through (2), (4) = 24,639.31 + 46,833.83 = <u>71,473.14</u> lb_f Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)						UG-45 Sur	nmary (in)	
For Pe = 15.74 psi @ 300 °F The opening is adequately reinforced						The nozzle p	asses UG-45	
A required	A available	A ₁	A ₂	A ₃	А ₅	A welds	t _{req}	t _{min}
<u>0.8843</u>	<u>0.8843</u>	<u>0.1841</u>	<u>0.1265</u>		<u>0.5268</u>	<u>0.0469</u>	<u>0.0625</u>	0.1444

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary						
Weld description	Required weld size (in)	Actual weld size (in)	Status			
Nozzle to pad fillet (Leg ₄₁)	<u>0.1155</u>	0.1312	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	<u>0.0836</u>	0.0937	weld size is adequate			

Calculations for external pressure 15.74 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

 $L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$

- = $\max [10.42, 5.21 + (0.165 0) + (0.1874 0)]$
- = 10.42 in

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min [2.5 · (t - C), 2.5 · (t_n - C_n) + t_e]

- = min $[2.5 \cdot (0.1874 0), 2.5 \cdot (0.165 0) + 0.1672]$
- = 0.4685 in

Nozzle required thickness per UG-28 t_{rn} = 0.03 in

From UG-37(d)(1) required thickness $t_r = 0.1697$ in

Area required per UG-37(d)(1)

Allowable stresses: S_n = 18,900, S_v = 18,900, S_p = 16,700 psi

$$f_{r1} = \text{lesser of 1 or } \frac{S_n}{S_v} = 1$$

$$f_{r2} = \text{lesser of 1 or } \frac{S_n}{S_v} = 1$$

$$f_{r3} = \text{lesser of } f_{r2} \text{ or } \frac{S_p}{S_v} = 0.8836$$

$$f_{r4} = \text{lesser of 1 or } \frac{S_p}{S_v} = 0.8836$$

 $\mathsf{A} = 0.5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r_1}))$

- $= 0.5 \cdot (10.42 \cdot 0.1697 \cdot 1 + 2 \cdot 0.165 \cdot 0.1697 \cdot 1 \cdot (1-1))$
- = <u>0.8843</u> in²

Area available from FIG. UG-37.1

 A_1 = larger of the following = <u>0.1841</u> in²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= 10.42 \cdot (1 \cdot 0.1874 1 \cdot 0.1697) 2 \cdot 0.165 \cdot (1 \cdot 0.1874 1 \cdot 0.1697) \cdot (1 1)$
- = 0.1841 in²
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= 2 \cdot (0.1874 + 0.165) \cdot (1 \cdot 0.1874 1 \cdot 0.1697) 2 \cdot 0.165 \cdot (1 \cdot 0.1874 1 \cdot 0.1697) \cdot (1 1)$
- = 0.0125 in²

 A_2 = smaller of the following = <u>0.1265</u> in²

- = $5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= 5 \cdot (0.165 0.03) \cdot 1 \cdot 0.1874$
- = 0.1265 in²
- $= 2 \cdot (t_n t_{rn}) \cdot (2.5 \cdot t_n + t_e) \cdot f_{r2}$
- $= 2 \cdot (0.165 0.03) \cdot (2.5 \cdot 0.165 + 0.1672) \cdot 1$
- = 0.1565 in²

 $A_{41} = Leg^2 \cdot f_{r3}$

- = 0.1875 $^{2} \cdot 0.8836$
- = <u>0.0311</u> in²

 $A_{42} = Leg^2 \cdot f_{r4}$

- = 0.1339² · 0.8836
- = 0.0158 in²
- $\mathsf{A}_5 \quad = \quad (D_p d 2 \cdot t_n) \cdot t_e \cdot f_{r4}$
 - $= (14.3158 10.42 2 \cdot 0.165) \cdot 0.1672 \cdot 0.8836$
 - = <u>0.5268</u> in²
- $Area = A_1 + A_2 + A_{41} + A_{42} + A_5$ = 0.1841 + 0.1265 + 0.0311 + 0.0158 + 0.5268 = <u>0.8843</u> in²

As Area >= A the reinforcement is adequate.

UW-16(c)(2) Weld Check

 Outer fillet: $t_{\min} = \min [0.75, t_e, t] = 0.1672$ in

 $t_{w(\min)} = 0.5 \cdot t_{\min} = 0.0836$ in

 $t_{w(\mathit{actual})} = 0.7 \cdot \mathrm{Leg} = 0.7 \cdot 0.1339 = 0.0937$ in

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-28}}$	=	0.03 in
t_a	=	$\max\left[t_{a\mathrm{UG-28}},t_{a\mathrm{UG-22}}\right]$
	=	$\max \left[0.03, 0 ight]$
	=	0.03 in
t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{15.7409 \cdot 20.8125}{18,900 \cdot 1 - 0.6 \cdot 15.7409} + 0$
	=	0.0173 in
t_{b2}	=	$\max\left[t_{b2},t_{b\mathrm{UG16}}\right]$
	=	$\max\ [0.0173, 0.0625]$
	=	0.0625 in
t_b	=	$\min \left[t_{l3} , t_{b2} \right]$
	=	min $[0.3194, 0.0625]$
	=	0.0625 in
$t_{ m UG-45}$	=	$\max \ [t_a,t_b]$
	=	$\max [0.03, 0.0625]$

= <u>0.0625</u> in

Available nozzle wall thickness new, t_{n} = $0.875 \cdot 0.165$ = 0.1444 in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 300 °F) UG-28(c)

 $\frac{L}{D_o} = \frac{6.887}{10.75} = 0.6407$ $\frac{D_o}{t} = \frac{10.75}{0.03} = 358.3940$

From table G: A = 0.000321From table HA-1: B = 4,230.9173 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 4,230.92}{3 \cdot (10.75/0.03)} = 15.74 \text{ psi}$$

Design thickness for external pressure $P_a = 15.74$ psi

 $t_a = t + \text{Corrosion} = 0.03 + 0 = 0.03"$

ASME Shell Band (rear)

ASME Section VIII Division 1, 2019 Edition						
Component		Cylinder				
Material		SA-240 304 (II-D p. 88, In. 37)				
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP		
No	No	No	No	No		
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)		
Internal		25	300	-20		
External		15	300	-20		
	Static Liquid Head					
Cor	dition	P _s (psi)	H _s (in)	SG		
Operating		0.17	4.8125	1		
Test horizontal		1.62	44.8125	1		
	Dimensions					
Inner Diameter		41.625"				
Length		12"				
Nominal Thickness		0.1874"				
Corrosion	Inner	0"				
	Outer	0"				
		Weight and C	apacity			
		Weight (lb)		Capacity (US gal)		
New		85.61		39.3		
Corroded		85.61		39.3		
Radiography						
Longitudinal seam		None UW-11(c) Type 1				
Left Circum	ferential seam	None UW-11(c) Type 1				

Results Summary				
Governing condition	External pressure			
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"			
Design thickness due to internal pressure (t)	<u>0.0397"</u>			
Design thickness due to external pressure (t_e)	<u>0.1667"</u>			
Maximum allowable working pressure (MAWP)	<u>118.31 psi</u>			
Maximum allowable pressure (MAP)	<u>125.38 psi</u>			
Maximum allowable external pressure (MAEP)	<u>20.53 psi</u>			
Rated MDMT	-320 °F			

UHA-51 Material Toughness Requirements			
$t_r = rac{86.52 \cdot 20.8125}{20,000 \cdot 0.7 - 0.6 \cdot 86.52} =$	0.1291"		
Stress ratio $= rac{t_r \cdot E^*}{t_n - c} = rac{0.1291 \cdot 0.8}{0.1874 - 0} =$	0.5511		
Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0.10%) = -320°F			
Material is exempt from impact testing at the Design MDMT of -20°F.			

Design thickness, (at 300 °F) UG-27(c)(1)

 $t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{25.17 \cdot 20.8125}{18,900 \cdot 0.70 - 0.60 \cdot 25.17} + 0 = \underline{0.0397}"$

Maximum allowable working pressure, (at 300 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{18,900 \cdot 0.70 \cdot 0.1874}{20.8125 + 0.60 \cdot 0.1874} - 0.17 = \underline{118.31} \text{ psi}$$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{20,000 \cdot 0.70 \cdot 0.1874}{20.8125 + 0.60 \cdot 0.1874} = \underline{125.38} \text{ psi}$$

External Pressure, (Corroded & at 300 °F) UG-28(c)

 $\frac{L}{D_o} = \frac{63.6625}{41.9998} = 1.5158$ $\frac{D_o}{t} = \frac{41.9998}{0.1667} = 252.0221$

From table G: A = 0.000215From table HA-1: B = 2,835.245 psi

 $P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 2,\!835.25}{3 \cdot (41.9998/0.1667)} = 15 \ \mathrm{psi}$

Design thickness for external pressure $P_a = 15$ psi

 $t_a = t + \text{Corrosion} = 0.1667 + 0 = 0.1667$ "

Maximum Allowable External Pressure, (Corroded & at 300 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{63.6625}{41.9998} = 1.5158$$
$$\frac{D_o}{t} = \frac{41.9998}{0.1874} = 224.1185$$

From table G: A = 0.000262From table HA-1: B = 3,451.429 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 3,451.43}{3 \cdot (41.9998/0.1874)} = rac{20.53}{20.53} \ {
m psi}$$

% Forming strain - UHA-44(a)(2)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 0.1874}{20.9062}\right) \cdot \left(1 - \frac{20.9062}{\infty}\right) = 0.4482\%$$

Allowable Compressive Stress, Hot and Corroded- $\rm S_{cHC},$ (table HA-1)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{20.9999/0.1874} = 0.001115$$
$$B = 7,619 \text{ psi}$$
$$S = \frac{18,900}{1.00} = 18,900 \text{ psi}$$

 $S_{c\!H\!C}~=~\min{\left(B,S
ight)}=$ 7,619 psi

Allowable Compressive Stress, Hot and New- $\mathsf{S}_{\mathsf{CHN}}$

 $S_cHN=S_cHC=$ 7,619 psi

Allowable Compressive Stress, Cold and New- S_{cCN}, (table HA-1)

$$\begin{split} A &= \frac{0.125}{R_o/t} = \frac{0.125}{20.9999/0.1874} = 0.001115\\ B &= 9,371 \text{ psi}\\ S &= \frac{20,000}{1.00} = 20,000 \text{ psi}\\ S_{cCN} &= \min \left(B,S\right) = 9,371 \text{ psi} \end{split}$$

Allowable Compressive Stress, Cold and Corroded- \mathbf{S}_{cCC}

 $S_{c\mathbb{C}}~=S_{cCN}~=9{,}371~\mathrm{psi}$

Allowable Compressive Stress, Vacuum and Corroded- $S_{\text{cVC}},$ (table HA-1)

$$A = rac{0.125}{R_o/t} = rac{0.125}{20.9999/0.1874} = 0.001115$$

 $B = 7{,}619~{
m psi}$

$$S = \frac{13,900}{1.00} = 18,900$$
 psi

 $S_{c\!V\!C}\ =\ \min\ (B,S\,)=$ 7,619 psi

Capped Vent Port (P6)

ASME Section VIII E	Division 1, 2019 Edition		
0.1874	0.1874		
Note: round inside edges per UG-76(c)			
	nd Orientation		
Located on	ASME Shell Band (rear)		
Orientation	180°		
Nozzle center line offset to datum line	16.125"		
End of nozzle to shell center	21.495"		
Passes through a Category A joint	No		
Service			
Description	Drain (DRN) NPS 0.5 Class 3000 - Threaded Half Coupling		
Access opening	No		
Material specification	SA-312 TP304 Wld pipe (II-D p. 92, In. 3)		
Inside diameter, new	0.84"		
Pipe nominal wall thickness	0.14"		
Pipe minimum wall thickness ¹	0.1225"		
Corrosion allowance	0"		
Projection available outside vessel, Lpr	0.4951"		
Internal projection, h _{new}	0.25"		
Local vessel minimum thickness	0.1874"		
Liquid static head included	0.18 psi		
Longitudinal joint efficiency	1		
	/elds		
Inner fillet, Leg ₄₁	0.1875"		
Lower fillet, Leg ₄₃	0"		
Nozzle to vessel groove weld	0.1874"		

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

UHA-51 Material Toughness Requirements Nozzle					
$t_r = \frac{86.53 \cdot 0.42}{17,000 \cdot 1 - 0.6 \cdot 86.53} =$	0.0021"				
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0021 \cdot 1}{0.1225 - 0} =$	0.0175				
Impact test exempt per UHA-51(g) (coincident ratio	= 0.0175)				
Rated MDMT =	-320°F				
Material is exempt from impact testing at the Design MDMT of -20°F.					

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)						UG-44 Sur	nmary (in)	
For P = 169.26 psi @ 300 °F					The nozzle p	asses UG-44		
A A A A_1 A_2 A_3 A_5 A welds							t _{req}	t _{min}
This nozzle is	exempt from a	irea ca	alculat	ions pe	er UG-	36(c)(3)(a)	<u>0.0625</u>	0.1225

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary							
Weld description Required weld throat size (in) Actual weld throat size (in) Status							
Nozzle to shell fillet (Leg ₄₁)	<u>0.0937</u>	0.1312	weld size is adequate				

Calculations for internal pressure 169.26 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

$$L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$$

- $= \max \left[0.84, 0.42 + (0.14 0) + (0.1874 0) \right]$
- = 0.84 in

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min \left[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e \right]$$

- = min $[2.5 \cdot (0.1874 0), 2.5 \cdot (0.14 0) + 0]$
- = 0.35 in

Inner Normal Limit of reinforcement per UG-40

- $L_{I} = \min [h, 2.5 \cdot (t C), 2.5 \cdot (t_{i} C_{n} C)]$
 - = min $[0.25, 2.5 \cdot (0.1874 0), 2.5 \cdot (0.14 0 0)]$
 - = 0.25 in

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$

=
$$\frac{169.2629 \cdot 0.42}{18,900 \cdot 1 - 0.6 \cdot 169.2629}$$

= 0.0038 in

Required thickness t_r from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

=
$$\frac{169.2629 \cdot 20.8125}{18,900 \cdot 1 - 0.6 \cdot 169.2629}$$

=
$$0.1874 \text{ in}$$

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{169.2629 \cdot 20.8125}{18,900 \cdot 0.7 - 0.6 \cdot 169.2629}$$

= 0.2683 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-44 Thickness Check - ASME B16.11 Coupling

Available nozzle wall thickness new, t_{n} = $0.875 \cdot 0.14$ = 0.1225 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)						UG-44 Sur	nmary (in)	
	For P = 179.12 psi @ 70 °F					The nozzle p	asses UG-44	
A required								t _{min}
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a)					36(c)(3)(a)	<u>0.0625</u>	0.1225

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

Calculations for internal pressure 179.12 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

- L_{R} = max $[d, R_n + (t_n C_n) + (t C)]$
 - $= \max \left[0.84, 0.42 + (0.14 0) + (0.1874 0) \right]$
 - = 0.84 in

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2.5 \cdot (0.1874 0), 2.5 \cdot (0.14 0) + 0 \right]$
- = 0.35 in

Inner Normal Limit of reinforcement per UG-40

$$\mathsf{L}_{\mathsf{I}} = \min [h, 2.5 \cdot (t - C), 2.5 \cdot (t_i - C_n - C)]$$

- $= \min \left[0.25, 2.5 \cdot (0.1874 0), 2.5 \cdot (0.14 0 0) \right]$
- = 0.25 in

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$
$$= \frac{179.1185 \cdot 0.42}{20,000 \cdot 1 - 0.6 \cdot 179.1185}$$

= 0.0038 in

Required thickness tr from UG-37(a)

$$\begin{aligned} \mathbf{t}_{\mathrm{r}} &= \frac{P \cdot R}{S \cdot E - 0.6 \cdot P} \\ &= \frac{179.1185 \cdot 20.8125}{20,000 \cdot 1 - 0.6 \cdot 179.1185} \end{aligned}$$

= 0.1874 in

Required thickness t_r per Interpretation VIII-1-07-50

$$t_r = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

$$= \frac{179.1185 \cdot 20.8125}{20,000 \cdot 0.7 - 0.6 \cdot 179.1185}$$

= 0.2683 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UG-44 Thickness Check - ASME B16.11 Coupling

= <u>0.0625</u> in

Available nozzle wall thickness new, t_{n} = $0.875 \cdot 0.14$ = 0.1225 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)						UG-45 Sur	nmary (in)	
For Pe = 20.53 psi @ 300 °F					The nozzle p	asses UG-45		
A A A A1 A2 A3 A5 A Atreq tmin						t _{min}		
This nozzle is	exempt from a	irea ca	alculat	ions pe	er UG-	36(c)(3)(a)	<u>0.0625</u>	0.1225

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary						
Weld description Required weld throat size (in) Actual weld throat size (in) Status						
Nozzle to shell fillet (Leg ₄₁)	<u>0.0937</u>	0.1312	weld size is adequate			

Calculations for external pressure 20.53 psi @ 300 °F

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[0.84, 0.42 + (0.14 0) + (0.1874 0) \right]$
- = 0.84 in

Outer Normal Limit of reinforcement per UG-40

 $L_{H} = \min \left[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e \right]$

- = min $[2.5 \cdot (0.1874 0), 2.5 \cdot (0.14 0) + 0]$
- = 0.35 in

Inner Normal Limit of reinforcement per UG-40

 $L_{I} = \min [h, 2.5 \cdot (t - C), 2.5 \cdot (t_{i} - C_{n} - C)]$

- = min $[0.25, 2.5 \cdot (0.1874 0), 2.5 \cdot (0.14 0 0)]$
- = 0.25 in

Nozzle required thickness per UG-28 trn = 0.0031 in

From UG-37(d)(1) required thickness $t_r = 0.1874$ in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [0.75, t_n, t] = 0.14$ in $t_{c(\min)} = \min [0.09375, 0.7 \cdot t_{\min}] = 0.0937$ in $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 0.1875 = 0.1313$ in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a { m UG-} 28}$	=	0.0031 in
t_a	=	$\max \left[t_{a\mathrm{UG-28}}, t_{a\mathrm{UG-22}}\right]$
	=	$\max[0.0031, 0]$
	=	0.0031 in
t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{20.5334 \cdot 20.8125}{18,900 \cdot 1 - 0.6 \cdot 20.5334} + 0$
	=	0.0226 in
t_{b2}	=	$\max\left[t_{b2},t_{b\mathrm{UG16}}\right]$
	=	$\max\ [0.0226, 0.0625]$
	=	0.0625 in
t_b	=	$\min \ [t_{b3},t_{b2}]$
	=	$\min\ [0.1164, 0.0625]$
	=	0.0625 in
$t_{ m UG-45}$	=	$\max\ [t_a,t_b]$
	=	$\max\ [0.0031, 0.0625]$
	=	<u>0.0625</u> in

Available nozzle wall thickness new, t_{n} = $0.875 \cdot 0.14$ = 0.1225 in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 300 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{0.5025}{1.12} = 0.4487$$
$$\frac{D_o}{t} = \frac{1.12}{0.0031} = 363.7734$$

From table G: A = 0.000456From table HA-1: $B = 5{,}600.7271$ psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 5,600.73}{3 \cdot (1.12/0.0031)} = 20.53$$
 psi

Design thickness for external pressure $P_a = 20.53$ psi

 $t_a = t + \text{Corrosion} = 0.0031 + 0 = 0.0031"$

Tube Side Flange (rear)

ASM	E Section VIII D	vivision 1, 2019 I	Edition , Appendix 2 Flan	ge Calculations			
Flang	је Туре	Ring type integral					
Attachn	nent Type	Figure UW-13.2 sketch (n)					
Flange	Material		SA-182 F60 (II-D p. 128	, In. 43)			
Attac	hed To		Rear Channel (Left)				
Impact Tested	Normalized	Fine Grain Practice					
Yes (-20°F)	No	No	No	No			
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)			
Inte	ernal	60	250	40			
Ext	ernal	15	250				
		Static I	₋iquid Head				
Con	dition		P _s (psi)				
Ope	rating		1.49				
		Dim	ensions				
Flang	e OD, A	47"					
Flang	je ID, B	41.5"	· · · · · · · · · · · · · · · · · · ·				
Bolt C	ircle, C	45.0625"	A				
Gasl	ket OD	42.9"	Rf				
Gas	Gasket ID		42.6" Gasket OD				
Raised	I Face ID	42.9"	Gasket ID				
Facing I	Height, t _{rf}	0"		T			
Flange T	hickness, t	1.75"	tp				
Hub Thio	ckness, g ₁	0.6071"	φ.	t			
Hub Thio	ckness, g ₀	0.25"	h				
Fillet	Weld, h	0.375"	-> +	-gt			
Groove	e Weld, w	0.25"	B	—q0			
Edge Di	stance, t _p	1.6"		95			
Corros	ion Bore	0"					
Corrosi	on Flange	0"					
		В	olting				
Ma	terial	SA-	-193 B7 Bolt <= 2 1/2 (II-D	p. 398, ln. 32)			
Desc	ription	28 - 0.625" coarse threaded					
Corrosio	on on root	0"					
		G	asket				
Fac	tor, m		0				
Seating	Stress, y		0 psi				
Thick	ness, T		0.125"				
		We	ight (lb)				
N	ew		188.7 lb				

Corroded	188.7 lb			
Radiography				
Longitudinal seam	Seamless No RT			
Right Circumferential seam	N/A			

Results Summary							
Flange design thickness:	1.3119"						
Maximum allowable working pressure, MAWP:	86.65 psi @ 250 °F						
Maximum allowable pressure, MAP:	89.46 psi @ 70 °F						
Maximum allowable external pressure, MAEP:	150 psi @ 250 °F (App 2-14(a) limits)						
Rated MDMT	-20 °F						

Note: this flange is an optional type calculated as integral. The following values are used in the calculations: g_0 = shell/nozzle wall thickness, h = actual length of flange hub plus fillet weld leg attaching hub to shell/nozzle Appendix 2-14(a) successful service experience active. Flange rigidity calculations are not performed for conditions where service restrictions are met.

UHA-51 Material Toughness Requirements						
Material impact test temperature per UHA-51(a) =	-20°F					
Bolts rated MDMT per Fig UCS-66 note (c) =						
Design MDMT of 40°F is acceptable.						

Stress Summary										
							Allow (psi)			
Design D. Waight Only	Oper	61.49	<u>27,941</u>	40,050	<u>1,187</u>	<u>6,519</u>	<u>14,564</u>	<u>17,230</u>	26,700	
Design P	Weight Only	Seating	01.49	<u>26,547</u>	40,650	<u>1,128</u>	<u>6,194</u>	<u>13,838</u>	<u>16,371</u>	27,100
Design Pe Weight Only	Oper	15	<u>1,819</u>	40,050	77	<u>424</u>	<u>948</u>	<u>1,121</u>	26,700	
	weight Only	Seating	15	<u>16,304</u>	40,650	<u>693</u>	<u>3,804</u>	<u>8,498</u>	<u>10,054</u>	27,100

Bolt Summary							
			P (psi)	W (lb _f)	A _m (in ²)	A _b (in ²)	
Docian P	esign P Weight Only		61.49	<u>88,834.5</u>	<u>3.55</u>	5.66	
Design				<u>0</u>	<u>0</u>	5.00	
Design P _e	Maight Only	Oper	15	<u>21,670.83</u>	<u>0</u>	5 66	
Design re	Weight Only	Seating	15	<u>0</u>	<u>0</u>	5.66	

Figure UW-13.2 Weld Sizing							
$a+b \geq 3t_n$	$a+b \geq 3t_n + C_{i,shell} + rac{C_{o,shell}}{0.7}$						
$h \geq rac{\min[t]}{}$	$[n,t_x]+C_{o,n}$ 0.7	shell	-				
$t_p \geq \min[t]$	[n, 0.25"] +	C_o					
	Results						
a+b =	0.7571"	\geq	$3\cdot 0.25 + 0 + rac{0}{0.7} =$	0.75"	~		
h =	0.375"	2	$\frac{\min\ [0.25, 0.5] + 0}{0.7} =$	0.3571"	~		
$g_1 - g_0 =$	0.3571"	\geq	$\frac{\min\ [0.25, 0.5] + 0}{0.7} =$	0.3571"	~		
$t_p =$	1.6"	2	$\min\ [0.25, 0.25] + 0 =$	0.25"	r		

Flange calculations for Internal Pressure + Weight Only

Gasket details from facing sketch Confined gasket 1(a)

Gasket width N = 0.15 in

$$b_0 = \frac{N}{2} = 0.075$$
 in

Effective gasket seating width, $b = b_0 = 0.075$ in

G = OD of contact face = 42.9 in (per VIII-1 Appendix 2-5 (c)3(a) for self energizing gaskets)

$$h_G = \frac{C-G}{2} = \frac{45.0625 - 42.9}{2} = 1.0813$$
 in

$$h_D = rac{R+g_1}{2} = rac{1.1741+0.6071}{2} = 1.4777$$
 in

$$h_T = rac{R+g_1+h_G}{2} = rac{1.1741+0.6071+1.0813}{2} = 1.4313$$
 in

 $H_p = 0$ per VIII-1 Appendix 2-5 (c)3(a) for self energizing gaskets.

$$H = 0.785 \cdot G^2 \cdot P = 0.785 \cdot 42.9^2 \cdot 61.489 = 88,834.5 \ \text{lb}_f$$

$$H_D = 0.785 \cdot B^2 \cdot P = 0.785 \cdot 41.5^2 \cdot 61.489 = 83,131.05$$
 lb _f

$$H_T = H - H_D = 88,834.5 - 83,131.05 = 5,703.45$$
 lb_f

$$W_{m1} = H + H_p = 88,834.5 + 0 = 88,834.5$$
 lbf

 $W_{m2} = 3.14 \cdot b \cdot G \cdot y = 3.14 \cdot 0.075 \cdot 42.9 \cdot 0 = 0$ lbf

Required bolt area, A_m = greater of A_{m1} , A_{m2} = 3.5534 in²

$$A_{m1} = \frac{W_{m1}}{S_b} = \frac{88,834.5}{25,000} = \frac{3.5534 \text{ in}^2}{25,000}$$

$$A_{m2} = \frac{W_{m2}}{S_a} = \frac{0}{25,000} = \frac{0 \text{ in}^2}{2}$$

Total area for 28 - 0.625" coarse threaded bolts, corroded, A_{b} = 5.656 \mbox{in}^{2}

$$W = \frac{(A_m + A_b) \cdot S_a}{2} = \frac{(3.5534 + 5.656) \cdot 25,000}{2} = 115,117.25 \text{ lb}_f$$

$$\begin{split} M_D &= H_D \cdot h_D = 83,\!131.05 \cdot 1.4777 = 122,\!841 \quad \text{lb}_f\text{-in} \\ M_T &= H_T \cdot h_T = 5,\!703.45 \cdot 1.4313 = 8,\!163.1 \quad \text{lb}_f\text{-in} \end{split}$$

$$H_G = W_{m1} - H = 88,834.5 - 88,834.5 = 0$$
 lb _f

 $M_G = H_G \cdot h_G = 0 \cdot 1.0813 = 0$ lb_f-in

$$M_o = M_D + M_T + M_G = 122,841 + 8,163.1 + 0 = 131,004$$
 lb_f-in

$$M_g = W \cdot h_G = 115,117.25 \cdot 1.0813 = 124,470.5$$
 lb_f-in

Hub and Flange Factors

$$g_{0} = t_{n} = 0.25 \text{ in}$$

$$h_{0} = \sqrt{B \cdot g_{0}} = \sqrt{41.5 \cdot 0.25} = 3.221 \text{ in}$$
From FIG. 2-7.1, where $K = \frac{A}{B} = \frac{47}{41.5} = 1.1325$

$$T = 1.8653 \quad Z = 8.0765 \quad Y = 15.6248 \qquad U = 17.1701$$

$$\frac{h}{h_{0}} = 0.1164 \quad \frac{g_{1}}{g_{0}} = 2.4286$$

$$F = 0.9027 \quad V = 0.4101 \quad e = \frac{F}{h_{0}} = 0.2803$$

$$d = \left(\frac{U}{V}\right) \cdot h_{0} \cdot g_{0}^{2} = \left(\frac{17.1701}{0.4101}\right) \cdot 3.221 \cdot 0.25^{2} = 8.4284 \text{ in}^{3}$$
Stresses at operating conditions - VIII-1 Appendix 2-7
$$f = 4.6818$$

$$L = \frac{t \cdot e + 1}{T} + \frac{t^{3}}{d} = \frac{1.75 \cdot 0.2803 + 1}{1.8653} + \frac{1.75^{3}}{8.4284} = 1.4349$$

$$S_{H} = \frac{f \cdot M_{0}}{L \cdot g_{1}^{2} \cdot B} = \frac{4.6818 \cdot 131,004}{1.4349 \cdot 0.6071^{2} \cdot 41.5} = 27.941 \text{ psi}$$

$$S_{R} = \frac{(1.33 \cdot t \cdot e + 1) \cdot M_{0}}{L \cdot t^{2} \cdot B} = \frac{(1.33 \cdot 1.75 \cdot 0.2803 + 1) \cdot 131,004}{1.4349 \cdot 1.75^{2} \cdot 41.5} = 1.187 \text{ psi}$$

$$S_{T} = \frac{Y \cdot M_{0}}{t^{2} \cdot B} - Z \cdot S_{R} = \frac{15.6248 \cdot 131,004}{1.75^{2} \cdot 41.5} - 8.0765 \cdot 1,187 = 6.519 \text{ psi}$$
Allowable stress $S_{fo} = 26,700 \text{ psi}$

 $\begin{array}{l} \mathsf{S}_{\mathsf{T}} \text{ does not exceed } \mathsf{S}_{\mathsf{fo}} \\ \mathsf{S}_{\mathsf{H}} \text{ does not exceed } \min \left[1.5 \cdot S_{\mathit{fo}} , 1.5 \cdot S_{\mathit{no}} \right] = 40,050 \hspace{0.2cm} \mathrm{psi} \\ \mathsf{S}_{\mathsf{R}} \text{ does not exceed } \mathsf{S}_{\mathsf{fo}} \\ \frac{S_{\mathit{H}} + S_{\mathit{R}}}{2} \hspace{0.2cm} = \hspace{0.2cm} \frac{14,564}{2} \hspace{0.2cm} \mathrm{psi} \hspace{0.2cm} \mathrm{does not exceed} \hspace{0.2cm} \mathsf{S}_{\mathsf{fo}} \\ \frac{S_{\mathit{H}} + S_{\mathit{T}}}{2} \hspace{0.2cm} = \hspace{0.2cm} \frac{17,230}{2} \hspace{0.2cm} \mathrm{psi} \hspace{0.2cm} \mathrm{does not exceed} \hspace{0.2cm} \mathsf{S}_{\mathsf{fo}} \end{array}$

Stresses at gasket seating - VIII-1 Appendix 2-7

$$S_{H} = \frac{f \cdot M_{g}}{L \cdot g_{1}^{2} \cdot B} = \frac{4.6818 \cdot 124,470.5}{1.4349 \cdot 0.6071^{-2} \cdot 41.5} = \underline{26,547 \text{ psi}}$$

$$S_{R} = \frac{(1.33 \cdot t \cdot e + 1) \cdot M_{g}}{L \cdot t^{2} \cdot B} = \frac{(1.33 \cdot 1.75 \cdot 0.2803 + 1) \cdot 124,470.5}{1.4349 \cdot 1.75^{-2} \cdot 41.5} = \underline{1,128 \text{ psi}}$$

$$S_{T} = \frac{Y \cdot M_{g}}{t^{2} \cdot B} - Z \cdot S_{R} = \frac{15.6248 \cdot 124,470.5}{1.75^{-2} \cdot 41.5} - 8.0765 \cdot 1,128 = \underline{6,194 \text{ psi}}$$
Allowable stress S_{fa} = 27,100 psi

Allowable stress $S_{na} = 27,100 \text{ psi}$

 S_T does not exceed S_{fa} S_H does not exceed min $[1.5 \cdot S_{fa}, 1.5 \cdot S_{na}] = 40,650$ psi S_R does not exceed S_{fa}

 $\frac{S_H + S_R}{2} = \frac{13,838}{12}$ psi does not exceed S_{fa} $\frac{S_H + S_T}{2} = \frac{16,371}{12}$ psi does not exceed S_{fa}

Flange calculations for External Pressure + Weight Only per VIII-1, Appendix 2-11

Gasket details from facing sketch Confined gasket 1(a)

Gasket width N = 0.15 in

$$b_0 = \frac{N}{2} = 0.075$$
 in

Effective gasket seating width, $b = b_0 = 0.075$ in

G = OD of contact face = 42.9 in (per VIII-1 Appendix 2-5 (c)3(a) for self energizing gaskets)

$$h_G = \frac{C-G}{2} = \frac{45.0625 - 42.9}{2} = 1.0813$$
 in

$$h_D = rac{R+g_1}{2} = rac{1.1741+0.6071}{2} = 1.4777$$
 in

$$h_T = rac{R+g_1+h_G}{2} = rac{1.1741+0.6071+1.0813}{2} = 1.4313$$
 in

 $H_p = 0$ per VIII-1 Appendix 2-5 (c)3(a) for self energizing gaskets.

$$H = 0.785 \cdot G^2 \cdot P = 0.785 \cdot 42.9^2 \cdot 15 = 21,670.83 \text{ lb}_f$$

 $H_D = 0.785 \cdot B^2 \cdot P = 0.785 \cdot 41.5^2 \cdot 15 = 20,279.49$ lb _f

 $H_T = H - H_D = 21,670.83 - 20,279.49 = 1,391.33$ lb_f

 $W_{m1} = H + H_p = 21,670.83 + 0 = 21,670.83 \text{ lb}_{f}$

 $W_{m2} = 3.14 \cdot b \cdot G \cdot y = 3.14 \cdot 0.075 \cdot 42.9 \cdot 0 = 0$ lbf

Required bolt area, A_m = greater of A_{m1} , A_{m2} = 0 in²

$$A_{m1} = \frac{0.785 \cdot G^2 \cdot (P_m - P_r)}{S_b} = \frac{0.785 \cdot 42.9^2 \cdot 0}{25,000} = \frac{0 \text{ in}^2}{2}$$

$$A_{m2} = \frac{W_{m2}}{S_a} = \frac{0}{25,000} = \frac{0 \text{ in}^2}{2}$$

Total area for 28 - 0.625" coarse threaded bolts, corroded, $A_b = 5.656 \text{ in}^2$

$$W = \frac{(A_{m2} + A_b) \cdot S_a}{2} = \frac{(0 + 5.656) \cdot 25,000}{2} = 70,700 \text{ lb}_f$$
$$M_o = H_D \cdot (h_D - h_G) + H_T \cdot (h_T - h_G) = 20,279.49 \cdot (1.4777 - 1.0813) + 1,391.33 \cdot (1.4313 - 1.0813)$$
$$M_g = W \cdot h_G = 70,700 \cdot 1.0813 = 76,444.4 \text{ lb}_f\text{-in}$$

= 8,526.3 lb_f-in

Hub and Flange Factors

$$g_{0} = t_{n} = 0.25 \text{ in}$$

$$h_{0} = \sqrt{B \cdot g_{0}} = \sqrt{41.5 \cdot 0.25} = 3.221 \text{ in}$$
From FIG. 2-7.1, where $K = \frac{A}{B} = \frac{47}{41.5} = 1.1325$

$$T = 1.8653 \quad Z = 8.0765 \quad Y = 15.6248 \qquad U = 17.1701$$

$$\frac{h}{h_{0}} = 0.1164 \quad \frac{g_{1}}{g_{0}} = 2.4286$$

$$F = 0.9027 \quad V = 0.4101 \quad e = \frac{F}{h_{0}} = 0.2803$$

$$d = \left(\frac{U}{V}\right) \cdot h_{0} \cdot g_{0}^{2} = \left(\frac{17.1701}{0.4101}\right) \cdot 3.221 \cdot 0.25^{2} = 8.4284 \text{ in}^{3}$$
Stresses at operating conditions - VIII-1 Appendix 2-7
$$f = 4.6818$$

$$L = \frac{t \cdot e + 1}{T} + \frac{t^{3}}{d} = \frac{1.75 \cdot 0.2803 + 1}{1.8653} + \frac{1.75^{3}}{8.4284} = 1.4349$$

$$S_{H} = \frac{f \cdot M_{o}}{L \cdot g_{1}^{2} \cdot B} = \frac{4.6818 \cdot 8.526.3}{1.4349 \cdot 0.6071^{2} \cdot 41.5} = 1.819 \text{ psi}$$

$$S_{R} = \frac{(1.33 \cdot t \cdot e + 1) \cdot M_{o}}{L \cdot t^{2} \cdot B} = \frac{(1.33 \cdot 1.75 \cdot 0.2803 + 1) \cdot 8.526.3}{1.75^{2} \cdot 41.5} = 77 \text{ psi}$$

$$S_{T} = \frac{Y \cdot M_{o}}{t^{2} \cdot B} - Z \cdot S_{R} = \frac{15.6248 \cdot 8.526.3}{1.75^{2} \cdot 41.5} - 8.0765 \cdot 77 = 424 \text{ psi}$$
Allowable stress $S_{T_{0}} = 26,700 \text{ psi}$

 $\begin{array}{l} \mathsf{S}_{\mathsf{T}} \text{ does not exceed } \mathsf{S}_{\mathsf{fo}} \\ \mathsf{S}_{\mathsf{H}} \text{ does not exceed } \min \left[1.5 \cdot S_{\mathit{fo}} , 1.5 \cdot S_{\mathit{no}} \right] = 40,050 \hspace{0.2cm} \mathrm{psi} \\ \mathsf{S}_{\mathsf{R}} \text{ does not exceed } \mathsf{S}_{\mathsf{fo}} \\ \frac{S_{\mathit{H}} + S_{\mathit{R}}}{2} = \hspace{0.2cm} \frac{948}{2} \hspace{0.2cm} \mathrm{psi} \hspace{0.2cm} \mathrm{does not exceed } \mathsf{S}_{\mathsf{fo}} \\ \frac{S_{\mathit{H}} + S_{\mathit{T}}}{2} = \hspace{0.2cm} \frac{948}{2} \hspace{0.2cm} \mathrm{psi} \hspace{0.2cm} \mathrm{does not exceed } \mathsf{S}_{\mathsf{fo}} \end{array}$

Stresses at gasket seating - VIII-1 Appendix 2-7

$$S_{H} = \frac{f \cdot M_{g}}{L \cdot g_{1}^{2} \cdot B} = \frac{4.6818 \cdot 76,444.4}{1.4349 \cdot 0.6071^{-2} \cdot 41.5} = \underline{16,304 \text{ psi}}$$

$$S_{R} = \frac{(1.33 \cdot t \cdot e + 1) \cdot M_{g}}{L \cdot t^{2} \cdot B} = \frac{(1.33 \cdot 1.75 \cdot 0.2803 + 1) \cdot 76,444.4}{1.4349 \cdot 1.75^{-2} \cdot 41.5} = \underline{693 \text{ psi}}$$

$$S_{T} = \frac{Y \cdot M_{g}}{t^{2} \cdot B} - Z \cdot S_{R} = \frac{15.6248 \cdot 76,444.4}{1.75^{-2} \cdot 41.5} - 8.0765 \cdot 693 = \underline{3,804 \text{ psi}}$$
Allowable stress S_{fa} = 27,100 psi

Allowable stress $S_{fa} = 27,100 \text{ psi}$ Allowable stress $S_{na} = 27,100 \text{ psi}$ S_{T} does not exceed S_{fa}

 S_{H} does not exceed min $[1.5 \cdot S_{fa}, 1.5 \cdot S_{na}] = 40,650$ psi

 $S_{R}\,\text{does}$ not exceed S_{fa}

 $rac{S_H+S_R}{2}=rac{8,498}{2}$ psi does not exceed S_{fa} $rac{S_H+S_T}{2}=rac{10.054}{2}$ psi does not exceed S_{fa}

Rear Channel

ASME Section VIII Division 1, 2019 Edition						
Component		Cylinder				
Mat	terial	SA-2	SA-240 S32205 (II-D p. 128, In. 35)			
Impact Tested	Impact Tested Normalized		РѠҤТ	Maximize MDMT/ No MAWP		
Yes (-20°F)	No	No	No	No		
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)		
Inte	ernal	60	250	40		
Ext	ernal	15	250			
	Static Liquid Head					
Condition		P _s (psi)	H _s (in)	SG		
Оре	Operating		41.25	1		
Test ho	orizontal	1.73	47.875	1		
		Dimensio	ns			
Inner D	Diameter	41.5"				
Le	ngth	6"				
Nominal	Thickness	0.25"				
Corrosion	Inner	0"				
	Outer	0"				
		Weight and C	apacity			
		Wei	ght (lb)	Capacity (US gal)		
New		5	55.48	35.13		
Corroded		55.48 35.13				
	Radiography					
Longitud	linal seam	None UW-11(c) Type 1				
Right Circum	ferential seam	None UW-11(c) Type 1				

Results Summary					
Governing condition	External pressure				
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"				
Design thickness due to internal pressure (t)	<u>0.0685"</u>				
Design thickness due to external pressure (t_e)	<u>0.0772"</u>				
Maximum allowable working pressure (MAWP)	<u>222.08 psi</u>				
Maximum allowable pressure (MAP)	<u>226.91 psi</u>				
Maximum allowable external pressure (MAEP)	<u>161.55 psi</u>				
Rated MDMT	-20 °F				

 UHA-51 Material Toughness Requirements

 Material impact test temperature per UHA-51(a) =
 -20°F

 Design MDMT of 40°F is acceptable.

Design thickness, (at 250 °F) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{61.49 \cdot 20.75}{26,700 \cdot 0.70 - 0.60 \cdot 61.49} + 0 = \underline{0.0685}"$$

Maximum allowable working pressure, (at 250 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{26,700 \cdot 0.70 \cdot 0.25}{20.75 + 0.60 \cdot 0.25} - 1.49 = \underline{222.08} \text{ psi}$$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{27,100 \cdot 0.70 \cdot 0.25}{20.75 + 0.60 \cdot 0.25} = \underline{226.91} \text{ psi}$$

External Pressure, (Corroded & at 250 °F) UG-28(c)

 $\frac{L}{D_o} = \frac{10.5985}{42} = 0.2523$ $\frac{D_o}{t} = \frac{42}{0.0772} = 543.8976$

From table G: A = 0.000448From table HA-5: B = 6,118.8911 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 6,118.89}{3 \cdot (42/0.0772)} = 15 \text{ psi}$$

Design thickness for external pressure $P_a = 15$ psi

 $t_a = t + \text{Corrosion} = 0.0772 + 0 = 0.0772$ "

Maximum Allowable External Pressure, (Corroded & at 250 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{10.5985}{42} = 0.2523$$
$$\frac{D_o}{t} = \frac{42}{0.25} = 168.0000$$

From table G: A = 0.002861From table HA-5: B = 20,355.4701 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 20,355.47}{3 \cdot (42/0.25)} = rac{161.55}{161.55} \, \mathrm{psi}$$

% Forming strain - UHA-44(a)(2)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 0.25}{20.875}\right) \cdot \left(1 - \frac{20.875}{\infty}\right) = 0.5988\%$$

Allowable Compressive Stress, Hot and Corroded- S_{cHC}, (table HA-5)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{21/0.25} = 0.001488$$
$$B = 17,241 \text{ psi}$$
$$S = \frac{26,700}{1.00} = 26,700 \text{ psi}$$

 $S_{c\!H\!C}\ =\ \min\ (B,S) =$ 17,241 psi

Allowable Compressive Stress, Hot and New- ${\rm S}_{\rm CHN}$

 $S_cHN=S_cHC=17{,}241~{\rm psi}$

Allowable Compressive Stress, Cold and New- $\rm S_{\rm cCN},$ (table HA-5)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{21/0.25} = 0.001488$$
$$B = 19,232 \text{ psi}$$
$$S = \frac{27,100}{1.00} = 27,100 \text{ psi}$$

 $S_{c\!C\!N}~=~\min~(B,S)=$ 19,232 psi

Allowable Compressive Stress, Cold and Corroded- S_{cCC}

 $S_{c\mathbb{C}}~=S_{c\!C\!N}~=19{,}232~$ psi

Allowable Compressive Stress, Vacuum and Corroded- S_{cVC} , (table HA-5)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{21/0.25} = 0.001488$$
$$B = 17,241 \text{ psi}$$

$$S = \frac{26,700}{1.00} = 26,700 \text{ psi}$$

 $S_{c\!V\!C}\ =\ \min\ (B,S\,)=$ 17,241 psi

Straight Flange on Rear Channel Head

ASME Section VIII Division 1, 2019 Edition						
Component		Cylinder				
Material		SA-240 S32205 (II-D p. 128, In. 35)				
Impact Tested	Impact Tested Normalized		РѠҤТ	Maximize MDMT/ No MAWP		
No	No	No	No	No		
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)		
Int	ernal	60	250	40		
Ext	ernal	15	250	10		
	Static Liquid Head					
Condition		P _s (psi)	H _s (in)	SG		
Operating		1.49	41.25	1		
Test h	Test horizontal		47.875	1		
		Dimensio	ons			
Inner I	Diameter	41.5"				
Le	ngth	0.5"				
Nominal	Thickness	0.25"				
Corrosion	Inner	O"				
	Outer		0"			
		Weight and C	apacity			
			ght (lb)	Capacity (US gal)		
New		· · · ·	4.62	2.93		
Corroded		· · · · ·	4.62	2.93		
		Radiogra	phy			
Longitudinal seam		Seamless No RT				
Left Circum	ferential seam	None UW-11(c) Type 1				

Results Summary					
Governing condition	External pressure				
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"				
Design thickness due to internal pressure (t)	<u>0.0564"</u>				
Design thickness due to external pressure (t_e)	<u>0.0772"</u>				
Maximum allowable working pressure (MAWP)	<u>269.98 psi</u>				
Maximum allowable pressure (MAP)	<u>275.54 psi</u>				
Maximum allowable external pressure (MAEP)	<u>161.55 psi</u>				
Rated MDMT	-20 °F				

UHA-51 Material Toughness Requirements					
$t_r = rac{88.14 \cdot 20.75}{27,\!100 \cdot 0.85 - 0.6 \cdot 88.14} =$	0.0796"				
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0796 \cdot 0.85}{0.25 - 0} =$	0.2706				
Impact test exempt per UHA-51(g) (coincident ratio = 0.2706)					
Rated MDMT = -20°F					
Material is exempt from impact testing at the Design MDMT of 40°F.					

Design thickness, (at 250 °F) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{61.49 \cdot 20.75}{26,700 \cdot 0.85 - 0.60 \cdot 61.49} + 0 = \underline{0.0564}"$$

Maximum allowable working pressure, (at 250 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{26,700 \cdot 0.85 \cdot 0.25}{20.75 + 0.60 \cdot 0.25} - 1.49 = \underline{269.98} \text{ psi}$$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{27,100 \cdot 0.85 \cdot 0.25}{20.75 + 0.60 \cdot 0.25} = \underline{275.54} \text{ psi}$

External Pressure, (Corroded & at 250 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{10.5985}{42} = 0.2523$$
$$\frac{D_o}{t} = \frac{42}{0.0772} = 543.8976$$

From table G: A = 0.000448From table HA-5: B = 6,118.8911 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 6,118.89}{3 \cdot (42/0.0772)} = 15 \text{ psi}$$

Design thickness for external pressure P_a = 15 psi

 $t_a = t + \text{Corrosion} = 0.0772 + 0 = 0.0772$ "

Maximum Allowable External Pressure, (Corroded & at 250 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{10.5985}{42} = 0.2523$$
$$\frac{D_o}{t} = \frac{42}{0.25} = 168.0000$$

From table G: A = 0.002861From table HA-5: B = 20,355.4701 psi

 $P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 20,\!355.47}{3 \cdot (42/0.25)} = rac{161.55}{161.55} \, \mathrm{psi}$

% Forming strain - UHA-44(a)(2)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 0.25}{20.875}\right) \cdot \left(1 - \frac{20.875}{\infty}\right) = 0.5988\%$$

Allowable Compressive Stress, Hot and Corroded- $S_{\text{cHC}},$ (table HA-5)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{21/0.25} = 0.001488$$
$$B = 17,241 \text{ psi}$$
$$S = \frac{26,700}{1.00} = 26,700 \text{ psi}$$

 $S_{c\!H\!C}\ =\ \min\ (B,S) =$ 17,241 psi

Allowable Compressive Stress, Hot and New- $\mathsf{S}_{\mathsf{CHN}}$

 $S_cHN=S_cHC$ = 17,241 psi

Allowable Compressive Stress, Cold and New- $\rm S_{\rm cCN},$ (table HA-5)

$$\begin{split} A &= \frac{0.125}{R_o/t} = \frac{0.125}{21/0.25} = 0.001488\\ B &= 19,232 \quad \text{psi}\\ S &= \frac{27,100}{1.00} = 27,100 \quad \text{psi}\\ S_{dCN} &= \min \left(B,S\right) = 19,232 \text{ psi} \end{split}$$

Allowable Compressive Stress, Cold and Corroded- \mathbf{S}_{cCC}

$$S_{c\mathbb{C}}~=S_{cCN}~=19{,}232~\mathrm{psi}$$

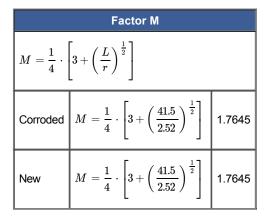
Allowable Compressive Stress, Vacuum and Corroded- $S_{\text{cVC}},$ (table HA-5)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{21/0.25} = 0.001488$$

$$B = 17,241 \text{ psi}$$

$$S = \frac{26,700}{1.00} = 26,700 \text{ psi}$$

$$S_{cVC} = \min(B,S) = 17,241 \text{ psi}$$


Rear Channel Head

ASME Section VIII Division 1, 2019 Edition						
Component		F&D Head				
Material		SA-240 S32205 (II-D p. 128, In. 35)				
Attac	hed To		Rear Channel			
Impact Tested	Normalized	Fine Grain Practice				
No	No	No	No	No		
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)		
Inte	ernal	60	250	40		
Ext	ernal	15	250	10		
		Static Liq	uid Head			
Con	Condition		H _s (in)	SG		
Оре	Operating		41.25	1		
Test h	orizontal	1.73	47.875	1		
Dimensions						
Inner [Diameter	41.5"				
Crown	Radius L	41.5"				
Knuckle	e Radius r	2.52"				
Minimum	Thickness	0.218"				
Corrosion	Inner	0"				
	Outer	0"				
Lenç	gth L _{sf}	0.5"				
Nominal T	hickness t _{s f}	0.25"				
		Weight and	Capacity			
		Weig	ght (lb) ¹	Capacity (US gal) ¹		
New		1	04.7	28.09		
Corroded		1	04.7	28.09		
	Radiography					
Category A joints		Seamless No RT				
Head to	shell seam	None UW-11(c) Type 1				

¹ includes straight flange

Results Summary					
Governing condition	internal pressure				
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"				
Design thickness due to internal pressure (t)	<u>0.1345</u> "				
Design thickness due to external pressure (t_e)	<u>0.1237</u> "				
Maximum allowable working pressure (MAWP)	<u>98.18</u> psi				
Maximum allowable pressure (MAP)	<u>101.16</u> psi				
Maximum allowable external pressure (MAEP)	<u>46.65</u> psi				
Straight Flange governs MDMT	-20°F				

Note: Endnote 90 used to determine allowable stress.

Design thickness for internal pressure, (Corroded at 250 °F) Appendix 1-4(d)

$$t = \frac{P \cdot L \cdot M}{2 \cdot S \cdot E - 0.2 \cdot P} + \text{Corrosion} = \frac{61.49 \cdot 41.5 \cdot 1.7645}{2 \cdot 19,704.8 \cdot 0.85 - 0.2 \cdot 61.49} + 0 = \underline{0.1345}"$$

Maximum allowable working pressure, (Corroded at 250 °F) Appendix 1-4(d)

$$P = \frac{2 \cdot S \cdot E \cdot t}{L \cdot M + 0.2 \cdot t} - P_s = \frac{2 \cdot 19,704.8 \cdot 0.85 \cdot 0.218}{41.5 \cdot 1.7645 + 0.2 \cdot 0.218} - 1.49 = \underline{98.18} \text{ psi}$$

Maximum allowable pressure, (New at 70 °F) Appendix 1-4(d)

$$P = \frac{2 \cdot S \cdot E \cdot t}{L \cdot M + 0.2 \cdot t} - P_s = \frac{2 \cdot 20,000 \cdot 0.85 \cdot 0.218}{41.5 \cdot 1.7645 + 0.2 \cdot 0.218} - 0 = \underline{101.16} \text{ psi}$$

Design thickness for external pressure, (Corroded at 250 °F) UG-33(e)

Equivalent outside spherical radius (R_0) = Outside crown radius = 41.718 in

$$A = \frac{0.125}{R_o \ / \ t} = \frac{0.125}{41.718 \ / \ 0.123616} = 0.00037$$

From Table HA-5:B = 5,062.2058 psi

$$P_a = \frac{B}{R_o \ / \ t} = \frac{5,062.2058}{41.718 \ / \ 0.1236} = 15 \text{ psi}$$

Check the external pressure per UG-33(a)(1) Appendix 1-4(d)

$$t = \frac{1.67 \cdot P_e \cdot L \cdot M}{2 \cdot S \cdot E - 0.2 \cdot 1.67 \cdot P_e} + \text{Corrosion} = \frac{1.67 \cdot 15 \cdot 41.5 \cdot 1.7645}{2 \cdot 19,704.8 \cdot 1 - 0.2 \cdot 1.67 \cdot 15} + 0 = 0.0466$$

The head external pressure design thickness (t_e) is <u>0.1236</u>".

Maximum Allowable External Pressure, (Corroded at 250 °F) UG-33(e)

Equivalent outside spherical radius (R_0) = Outside crown radius = 41.718 in

$$A = rac{0.125}{R_o \ / \ t} = rac{0.125}{41.718 \ / \ 0.218} = 0.000653$$

From Table HA-5:B = 8,926.5947 psi

$$P_a = {B \over R_o \ / \ t} = {8,926.5947 \over 41.718 \ / \ 0.218} = 46.6465 ~{
m psi}$$

Check the Maximum External Pressure, UG-33(a)(1) Appendix 1-4(d)

$$P = \frac{2 \cdot S \cdot E \cdot t}{(L \cdot M + 0.2 \cdot t) \cdot 1.67} = \frac{2 \cdot 19,704.8 \cdot 1 \cdot 0.218}{(41.5 \cdot 1.7645 + 0.2 \cdot 0.218) \cdot 1.67} = 70.21 \text{ psi}$$

The maximum allowable external pressure (MAEP) is <u>46.65</u> psi.

% Forming strain - UHA-44(a)(2)

$$EFE = \left(\frac{75 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{75 \cdot 0.25}{2.645}\right) \cdot \left(1 - \frac{2.645}{\infty}\right) = 7.0888\%$$

Saddle #1

ASME Section VIII Division	on 1, 2019 Edition		
Saddle Material	sa240-304		
Saddle Construction	Web at edge of rib		
Welded to Vessel	Yes		
Saddle Allowable Stress, S _s	20,000 psi		
Saddle Yield Stress, S _y	38,000 psi		
Saddle on Steel Foundation	Yes		
Design Pressure	Left Saddle Right Saddle		
	96 52 pci		
Operating Test	86.52 psi 113.87 psi		
Vacuum	· · ·		
Dimensio	15 psi		
Right saddle distance to datum	14"		
Tangent To Tangent Length, L	172.75"		
Saddle separation, L _s	120"		
Vessel Radius, R	20.9999"		
Tangent Distance Left, A _l	38.25"		
Tangent Distance Right, A _r	14.5"		
TubeSheet Distance Left,	17.25"		
Tubesheet Distance Right,	5.5"		
Saddle Height, H _s	30.25"		
Saddle Contact Angle, θ	124°		
Web Plate Thickness, t _s	0.25"		
Base Plate Length, E	41.9333"		
Base Plate Width, F	9"		
Base Plate Thickness, t _b	0.375"		
Number of Stiffening Ribs, n	5		
Largest Stiffening Rib Spacing, d _i	10.1708"		
Stiffening Rib Thickness, t _w	0.25"		
Saddle Width, b	8"		
Reinforcing	g Plate		
Thickness, t _p	0.25"		
Width, W _p	11"		
Contact Angle, θ_w	132°		
Bolting			
Material			
Bolt Allowable Shear	15,000 psi		
Description	1" series 8 threaded		
Corrosion on root	0"		

Anchor Bolts per Saddle	2			
Base coefficient of friction, μ	0	.45		
Hole Diameter	1.25"			
Slotted Hole in Which Saddle	Right Saddle			
Slotted Hole Length	0.5"			
Weight				
	Operating, Corroded	Hydrotest		
Weight on Left Saddle	6,466 lb 8,464 lb			
Weight on Right Saddle	4,272 lb 5,904 lb			
Weight of Saddle Pair	294 lb			

Notes

(1) Saddle calculations are based on the method presented in "Stresses in Large Cylindrical Pressure Vessels on Two Saddle Supports" by L.P. Zick. (2) If CL of tubesheet is located within a distance of R_0 / 2 to CL of saddle, the shell is assumed stiffened as if tubesheet is a bulk

head.

Stress Summary										
Load	Condition	Saddle	Bending + pressure between saddles (psi)				Bending + pressure at the saddle (psi)			
			S ₁ (+)	allow (+)	S ₁ (-)	allow (-)	S ₂ (+)	allow (+)	S ₂ (-)	allow (-)
Weight	Operating	Right Saddle	<u>5,260</u>	13,230	<u>456</u>	7,619	<u>4,822</u>	18,900	<u>18</u>	7,619
		Left Saddle					<u>6,463</u>	18,900	<u>1,659</u>	7,619
	Test	Right Saddle	<u>6,953</u>	18,900	<u>630</u>	9,371	<u>6,347</u>	27,000	<u>24</u>	9,371
		Left Saddle					<u>8,542</u>	27,000	<u>2,219</u>	9,371
	Vacuum	Right Saddle	<u>456</u>	13,230	<u>1,289</u>	7,619	<u>18</u>	18,900	<u>851</u>	7,619
		Left Saddle					<u>1,659</u>	18,900	<u>2,492</u>	7,619

Stress Summary										
Load		Saddle	Tangential shear (psi)		Circumferential stress (psi)		Stress over saddle (psi)		Splitting (psi)	
	Condition		S ₃	allow	S ₄ (horns)	allow (+/-)	S ₅	allow	S ₆	allow
	Operating	Right Saddle	<u>886</u>	15,120	<u>-2,776</u>	28,350	<u>1,463</u>	11,200	<u>200</u>	13,333
Weight		Left Saddle	<u>1,111</u>	15,120	<u>-10,803</u>	28,350	<u>2,214</u>	11,200	<u>303</u>	13,333
	Test	Right Saddle	<u>1,225</u>	21,600	<u>-3,837</u>	27,000	<u>2,022</u>	27,000	<u>277</u>	34,200
		Left Saddle	<u>1,433</u>	21,600	<u>-14,141</u>	27,000	<u>2,899</u>	27,000	<u>396</u>	34,200
	Vacuum	Right Saddle	<u>886</u>	15,120	<u>-2,776</u>	28,350	<u>1,463</u>	11,200	<u>200</u>	13,333
		Left Saddle	<u>1,111</u>	15,120	<u>-10,803</u>	28,350	<u>2,214</u>	11,200	<u>303</u>	13,333

Load Case 1: Weight, Operating

Longitudinal stress between saddles (Weight, Operating, right saddle loading and geometry govern)

$$S_1 = \pm \frac{3 \cdot K_1 \cdot Q \cdot (L \ / \ 12)}{\pi \cdot R^2 \cdot t} = \frac{3 \cdot 0.6358 \cdot 4,272 \cdot (172.75 \ / \ 12)}{\pi \cdot 20.9062^{\ 2} \cdot 0.1874} = 456 \text{ psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{86.52 \cdot 20.8125}{2 \cdot 0.1874} = 4,805$$
 psi

Maximum tensile stress $S_{1t} = S_1 + S_p = 5,260$ psi Maximum compressive stress (shut down) $S_{1c} = S_1 = 456$ psi

Tensile stress is acceptable ($\leq S \cdot E = 13,230$ psi)

Compressive stress is acceptable ($\leq S_c = 7,619$ psi)

Longitudinal stress at the right saddle (Weight, Operating)

$$L_e = \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 7.2636}{3} + 172.75 + \frac{2 \cdot 7.2636}{3} = 182.4348$$
 in

 $w = rac{W_t}{L_e} = rac{10,738}{182.4348} = 58.86 \ \ {
m lb}_f/{
m in}$

Bending moment at the right saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_r \cdot A_r}{3} + \frac{A_r^2}{2} - \frac{R^2 - H_r^2}{4}\right) \\ &= 58.86 \cdot \left(\frac{2 \cdot 7.2636 \cdot 14.5}{3} + \frac{14.5}{2} - \frac{20.9999^{-2} - 7.2636^{-2}}{4}\right) \\ &= 4,607.5 \quad \text{lb}_f\text{-in} \end{split}$$

$$S_2 = \pm rac{M_q \cdot K_1{\,}'}{\pi \cdot R^2 \cdot t} = rac{4,607.5 \cdot 1}{\pi \cdot 20.9062^{-2} \cdot 0.1874} = 18 \;\; {
m psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{86.52 \cdot 20.8125}{2 \cdot 0.1874} = 4,805$$
 psi

Maximum tensile stress $S_{2t} = S_2 + S_p = \frac{4.822}{1.822}$ psi Maximum compressive stress (shut down) $S_{2c} = S_2 = \frac{18}{1.8}$ psi

Tensile stress is acceptable ($\leq S = 18,900$ psi) Compressive stress is acceptable ($\leq S_c = 7,619$ psi)

Tangential shear stress in the shell (right saddle, Weight, Operating)

$$S_3 = \frac{K_{2.3} \cdot Q}{R \cdot t} = \frac{0.8127 \cdot 4,\!272}{20.9062 \cdot 0.1874} = \underline{886} \text{ psi}$$

Tangential shear stress is acceptable ($\leq 0.8 \cdot S = 15{,}120~{
m psi}$)

The wear plate was not considered in the calculation of S_3 because the wear plate contact angle did not exceed the saddle contact angle by at least 11.46°.

Circumferential stress at the right saddle horns (Weight, Operating)

$$S_{4} = \frac{-Q}{4 \cdot t \cdot (b + 1.56 \cdot \sqrt{R_{o} \cdot t})} - \frac{3 \cdot K_{3} \cdot Q}{2 \cdot t^{2}}$$
$$= \frac{-4,272}{4 \cdot 0.1874 \cdot (8 + 1.56 \cdot \sqrt{20.9999 \cdot 0.1874})} - \frac{3 \cdot 0.0124 \cdot 4,272}{2 \cdot 0.1874^{-2}}$$
$$= -2.776 \text{ psi}$$

Circumferential stress at saddle horns is acceptable ($\leq 1.5 \cdot S_a = 28,350 \text{ psi}$) The wear plate was not considered in the calculation of S₄ because the wear plate contact angle did not exceed the saddle contact angle by at least 11.46° and the wear plate width is not at least $\{b + 1.56 \cdot \sqrt{R_o \cdot t}\} = 11.0947$ in

Ring compression in shell over right saddle (Weight, Operating)

$$S_{5} = \frac{K_{5} \cdot Q}{(t+t_{p}) \cdot (t_{s} + 1.56 \cdot \sqrt{R_{o} \cdot t_{c}})}$$
$$= \frac{0.7457 \cdot 4,272}{(0.1874 + 0.25) \cdot (0.25 + 1.56 \cdot \sqrt{20.9999 \cdot 0.4374^{-}})}$$
$$= \underline{1.463} \text{ psi}$$

Ring compression in shell is acceptable ($\leq 0.5 \cdot S_y = 11,200~{
m psi}$)

Saddle splitting load (right, Weight, Operating)

Area resisting splitting force = Web area + wear plate area

$$A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 7 \cdot 0.25 + 0.25 \cdot 11$$
 = 4.5 in²

$$S_6 = \frac{K_8 \cdot Q}{A_e} = \frac{0.2108 \cdot 4,272}{4.5} = \frac{200}{200}$$
 psi

Stress in saddle is acceptable $\left(\ \leq rac{2}{3} \cdot S_s = 13{,}333 \ \mathrm{psi}
ight)$

Longitudinal stress at the left saddle (Weight, Operating)

$$\begin{split} L_e &= \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 7.2636}{3} + 172.75 + \frac{2 \cdot 7.2636}{3} = 182.4348 \text{ in} \\ w &= \frac{W_t}{L_e} = \frac{10,738}{182.4348} = 58.86 \text{ lb}_f/\text{in} \end{split}$$

Bending moment at the left saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_l \cdot A_l}{3} + \frac{A_l^2}{2} - \frac{R^2 - H_l^2}{4}\right) \\ &= 58.86 \cdot \left(\frac{2 \cdot 7.2636 \cdot 38.25}{3} + \frac{38.25^2}{2} - \frac{20.9999^2 - 7.2636^2}{4}\right) \\ &= 48,246.7 \ \text{lb}_{f}\text{-in} \end{split}$$

$$S_2 = \pm rac{M_q \cdot K_1{'}}{\pi \cdot R^2 \cdot t} = rac{48,246.7 \cdot 8.8457}{\pi \cdot 20.9062^{-2} \cdot 0.1874} = 1,659 {
m \ psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{86.52 \cdot 20.8125}{2 \cdot 0.1874} = 4,805$$
 psi

Maximum tensile stress $S_{2t} = S_2 + S_p = 6.463$ psi Maximum compressive stress (shut down) $S_{2c} = S_2 = 1.659$ psi

Tensile stress is acceptable ($\leq S = 18,900$ psi)

Compressive stress is acceptable ($\leq S_c =$ 7,619 $\, {
m psi})$

Tangential shear stress in the shell (left saddle, Weight, Operating)

$$\begin{split} Q_{shear} &= Q - w \cdot \left(A_l + \frac{2 \cdot H_l}{3}\right) = 6,466 - 58.86 \cdot \left(38.25 + \frac{2 \cdot 7.2636}{3}\right) = 3,929.61 \quad \text{lb}_f \\ S_3 &= \frac{K_{2.2} \cdot Q_{shear}}{R \cdot t} = \frac{1.1076 \cdot 3,929.61}{20.9062 \cdot 0.1874} = \underline{1,111} \quad \text{psi} \end{split}$$

Tangential shear stress is acceptable ($\leq 0.8 \cdot S = 15,120$ psi)

Circumferential stress at the left saddle horns (Weight, Operating)

$$S_{4} = \frac{-Q}{4 \cdot t \cdot (b + 1.56 \cdot \sqrt{R_{o} \cdot t})} - \frac{3 \cdot K_{3} \cdot Q}{2 \cdot t^{2}}$$

= $\frac{-6,466}{4 \cdot 0.1874 \cdot (8 + 1.56 \cdot \sqrt{20.9999 \cdot 0.1874})} - \frac{3 \cdot 0.0363 \cdot 6,466}{2 \cdot 0.1874^{-2}}$
= -10.803 psi

Circumferential stress at saddle horns is acceptable ($\leq 1.5 \cdot S_a = 28,350 \text{ psi}$) The wear plate was not considered in the calculation of S₄ because the wear plate contact angle did not exceed the saddle contact angle by at least 11.46° and the wear plate width is not at least { $b + 1.56 \cdot \sqrt{R_o \cdot t}$ } = 11.0947 in

Ring compression in shell over left saddle (Weight, Operating)

$$S_{5} = \frac{K_{5} \cdot Q}{(t + t_{p}) \cdot (t_{s} + 1.56 \cdot \sqrt{R_{o} \cdot t_{c}})}$$
$$= \frac{0.7457 \cdot 6,466}{(0.1874 + 0.25) \cdot (0.25 + 1.56 \cdot \sqrt{20.9999 \cdot 0.4374})}$$
$$= \underline{2.214} \text{ psi}$$

Ring compression in shell is acceptable ($\leq 0.5 \cdot S_y = 11,200$ psi)

Saddle splitting load (left, Weight, Operating)

Area resisting splitting force = Web area + wear plate area

$$\begin{split} A_e &= H_{eff} \cdot t_s + t_p \cdot W_p = 7 \cdot 0.25 + 0.25 \cdot 11 = 4.5 \text{ in}^2 \\ S_6 &= \frac{K_8 \cdot Q}{A_e} = \frac{0.2108 \cdot 6,466}{4.5} = \underline{303} \text{ psi} \end{split}$$

Stress in saddle is acceptable
$$\bigg(\ \leq rac{2}{3} \cdot S_s = 13{,}333 \ ext{ psi} \bigg)$$

Load Case 2: Weight, Test

Longitudinal stress between saddles (Weight, Test, right saddle loading and geometry govern)

$$S_1 = \pm \frac{3 \cdot K_1 \cdot Q \cdot (L \ / \ 12)}{\pi \cdot R^2 \cdot t} = \frac{3 \cdot 0.6358 \cdot 5,904 \cdot (172.75 \ / \ 12)}{\pi \cdot 20.9062^{-2} \cdot 0.1874} = 630 \text{ psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{113.87 \cdot 20.8125}{2 \cdot 0.1874} = 6{,}323 \text{ psi}$$

Maximum tensile stress $S_{1t} = S_1 + S_p = \underline{6.953}$ psi Maximum compressive stress (shut down) $S_{1c} = S_1 = \underline{630}$ psi

Tensile stress is acceptable ($\leq 0.9 \cdot S_y \cdot E = 18,900~{
m psi}$)

Compressive stress is acceptable ($\leq S_c = 9,371$ psi)

Longitudinal stress at the right saddle (Weight, Test)

$$L_e = \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 7.2636}{3} + 172.75 + \frac{2 \cdot 7.2636}{3} = 182.4348$$
 in

$$w = \frac{W_t}{L_e} = \frac{14,368}{182.4348} = 78.76 \ \ \mathrm{lb}_f/\mathrm{in}$$

Bending moment at the right saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_r \cdot A_r}{3} + \frac{A_r^2}{2} - \frac{R^2 - H_r^2}{4}\right) \\ &= 78.76 \cdot \left(\frac{2 \cdot 7.2636 \cdot 14.5}{3} + \frac{14.5^2}{2} - \frac{20.9999^{-2} - 7.2636^{-2}}{4}\right) \end{split}$$

$$= 6,165.1 \ \text{lb}_f \text{-in}$$

$$S_2 = \pm \frac{M_q \cdot K_1'}{\pi \cdot R^2 \cdot t} = \frac{6,165.1 \cdot 1}{\pi \cdot 20.9062^{-2} \cdot 0.1874} = 24$$
 psi

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{113.87 \cdot 20.8125}{2 \cdot 0.1874} = 6,323$$
 psi

Maximum tensile stress $S_{2t} = S_2 + S_p = \frac{6.347}{9}$ psi Maximum compressive stress (shut down) $S_{2c} = S_2 = \frac{24}{9}$ psi

Tensile stress is acceptable ($\leq 0.9 \cdot S_y = 27,000$ psi)

Compressive stress is acceptable ($\leq S_c = 9,371$ psi)

Tangential shear stress in the shell (right saddle, Weight, Test)

$$S_3 = \frac{K_{2.3} \cdot Q}{R \cdot t} = \frac{0.8127 \cdot 5,904}{20.9062 \cdot 0.1874} = \underline{1,225} \text{ psi}$$

Tangential shear stress is acceptable ($\leq 0.8 \cdot (0.9 \cdot S_y) = 21,600$ psi)

The wear plate was not considered in the calculation of S_3 because the wear plate contact angle did not exceed the saddle contact angle by at least 11.46°.

Circumferential stress at the right saddle horns (Weight, Test)

$$S_{4} = \frac{-Q}{4 \cdot t \cdot (b + 1.56 \cdot \sqrt{R_{o} \cdot t})} - \frac{3 \cdot K_{3} \cdot Q}{2 \cdot t^{2}}$$
$$= \frac{-5,904}{4 \cdot 0.1874 \cdot (8 + 1.56 \cdot \sqrt{20.9999 \cdot 0.1874^{-}})} - \frac{3 \cdot 0.0124 \cdot 5,904}{2 \cdot 0.1874^{-2}}$$
$$= \underline{-3.837} \text{ psi}$$

Circumferential stress at saddle horns is acceptable ($\leq 0.9 \cdot S_y = 27,000 \text{ psi}$) The wear plate was not considered in the calculation of S₄ because the wear plate contact angle did not exceed the saddle contact angle by at least 11.46° and the wear plate width is not at least { $b + 1.56 \cdot \sqrt{R_o \cdot t}$ } = 11.0947 in

Ring compression in shell over right saddle (Weight, Test)

$$S_{5} = \frac{K_{5} \cdot Q}{(t+t_{p}) \cdot (t_{s}+1.56 \cdot \sqrt{R_{o} \cdot t_{c}})}$$
$$= \frac{0.7457 \cdot 5,904}{(0.1874+0.25) \cdot (0.25+1.56 \cdot \sqrt{20.9999 \cdot 0.4374^{-}})}$$
$$= \underline{2,022} \text{ psi}$$

Ring compression in shell is acceptable ($\leq 0.9 \cdot S_y = 27,000$ psi)

Saddle splitting load (right, Weight, Test)

Area resisting splitting force = Web area + wear plate area

$$A_e = H_{eff} \, \cdot t_s + t_p \, \cdot W_p = 7 \cdot 0.25 + 0.25 \cdot 11$$
 = 4.5 in²

$$S_6 = rac{K_8 \cdot Q}{A_e} = rac{0.2108 \cdot 5{,}904}{4.5} = rac{277}{277} \; \mathrm{psi}$$

Stress in saddle is acceptable ($\leq 0.9 \cdot S_y = 34{,}200~{
m psi})$

Longitudinal stress at the left saddle (Weight, Test)

$$\begin{split} L_e &= \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 7.2636}{3} + 172.75 + \frac{2 \cdot 7.2636}{3} = 182.4348 \ \, \text{in} \\ w &= \frac{W_t}{L_e} = \frac{14,368}{182.4348} = 78.76 \ \, \text{lb}_f/\text{in} \end{split}$$

Bending moment at the left saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_l \cdot A_l}{3} + \frac{A_l^2}{2} - \frac{R^2 - H_l^2}{4}\right) \\ &= 78.76 \cdot \left(\frac{2 \cdot 7.2636 \cdot 38.25}{3} + \frac{38.25^2}{2} - \frac{20.9999^2 - 7.2636^2}{4}\right) \\ &= 64,556.5 \ \text{lb}_{f} \text{-in} \end{split}$$

$$S_2 = \pm \frac{M_q \cdot K_1'}{\pi \cdot R^2 \cdot t} = \frac{64,556.5 \cdot 8.8457}{\pi \cdot 20.9062^{-2} \cdot 0.1874} = 2,219 \text{ psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{113.87 \cdot 20.8125}{2 \cdot 0.1874} = 6,323$$
 psi

Maximum tensile stress $S_{2t} = S_2 + S_p = \frac{8,542}{2}$ psi Maximum compressive stress (shut down) $S_{2c} = S_2 = \frac{2,219}{2}$ psi

 $\begin{array}{ll} {\sf Tensile \ stress \ is \ acceptable \ (\ \leq 0.9 \cdot S_y \ = 27,\!000 \quad {\rm psi})} \\ {\sf Compressive \ stress \ is \ acceptable \ (\ \leq S_c \ = 9,\!371 \quad {\rm psi})} \end{array}$

Tangential shear stress in the shell (left saddle, Weight, Test)

$$Q_{shear} = Q - w \cdot \left(A_l + \frac{2 \cdot H_l}{3}\right) = 8,464 - 78.76 \cdot \left(38.25 + \frac{2 \cdot 7.2636}{3}\right) = 5,070.18 \text{ lb}_f$$

$$S_3 = \frac{K_{2.2} \cdot Q_{shear}}{R \cdot t} = \frac{1.1076 \cdot 5,070.18}{20.9062 \cdot 0.1874} = \underline{1.433}$$
 psi

Tangential shear stress is acceptable ($\leq 0.8 \cdot (0.9 \cdot S_y) = 21,600$ psi)

Circumferential stress at the left saddle horns (Weight, Test)

$$S_{4} = \frac{-Q}{4 \cdot t \cdot (b + 1.56 \cdot \sqrt{R_{o} \cdot t})} - \frac{3 \cdot K_{3} \cdot Q}{2 \cdot t^{2}}$$
$$= \frac{-8,464}{4 \cdot 0.1874 \cdot (8 + 1.56 \cdot \sqrt{20.9999 \cdot 0.1874})} - \frac{3 \cdot 0.0363 \cdot 8,464}{2 \cdot 0.1874^{-2}}$$
$$= -14.141 \text{ psi}$$

Circumferential stress at saddle horns is acceptable ($\leq 0.9 \cdot S_y = 27,000 \text{ psi}$) The wear plate was not considered in the calculation of S₄ because the wear plate contact angle did not exceed the saddle contact angle by at least 11.46° and the wear plate width is not at least $\{b + 1.56 \cdot \sqrt{R_o \cdot t}\} = 11.0947$ in

Ring compression in shell over left saddle (Weight, Test)

$$S_{5} = \frac{K_{5} \cdot Q}{(t+t_{p}) \cdot (t_{s}+1.56 \cdot \sqrt{R_{o} \cdot t_{c}})}$$
$$= \frac{0.7457 \cdot 8,464}{(0.1874+0.25) \cdot (0.25+1.56 \cdot \sqrt{20.9999 \cdot 0.4374})}$$

= <u>2,899</u> psi

Ring compression in shell is acceptable ($\leq 0.9 \cdot S_y = 27,000$ psi)

Saddle splitting load (left, Weight, Test)

Area resisting splitting force = Web area + wear plate area

$$A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 7 \cdot 0.25 + 0.25 \cdot 11 = 4.5 \text{ in}^2$$

$$S_6 = rac{K_8 \cdot Q}{A_e} = rac{0.2108 \cdot 8,464}{4.5} = rac{396}{396} \; \mathrm{psi}$$

Stress in saddle is acceptable ($\leq 0.9 \cdot S_y = 34{,}200~{
m psi})$

Load Case 3: Weight, Vacuum

Longitudinal stress between saddles (Weight, Vacuum, right saddle loading and geometry govern)

$$S_{1} = \pm \frac{3 \cdot K_{1} \cdot Q \cdot (L \ / \ 12)}{\pi \cdot R^{2} \cdot t} = \frac{3 \cdot 0.6358 \cdot 4.272 \cdot (172.75 \ / \ 12)}{\pi \cdot 20.9062^{-2} \cdot 0.1874} = 456 \text{ psi}$$
$$S_{2} = \frac{P \cdot R}{R} = \frac{15 \cdot 20.8125}{R} = 833 \text{ psi}$$

$$S_p = \frac{1}{2 \cdot t} = \frac{1}{2 \cdot 0.1874} = 855$$
 psr

Maximum tensile stress (shut down) $S_{1t} = S_1 = \frac{456}{1,289}$ psi Maximum compressive stress $S_{1c} = S_1 + S_p = \frac{1,289}{1,289}$ psi

Tensile stress is acceptable ($\leq S \cdot E = 13,230$ psi)

Compressive stress is acceptable ($\leq S_c =$ 7,619 $\, {
m psi})$

Longitudinal stress at the right saddle (Weight, Vacuum)

$$L_e = \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 7.2636}{3} + 172.75 + \frac{2 \cdot 7.2636}{3} = 182.4348$$
 in

$$w = \frac{W_t}{L_e} = \frac{10,738}{182.4348} = 58.86 \text{ lb}_f/\text{in}$$

Bending moment at the right saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_r \cdot A_r}{3} + \frac{A_r^2}{2} - \frac{R^2 - H_r^2}{4}\right) \\ &= 58.86 \cdot \left(\frac{2 \cdot 7.2636 \cdot 14.5}{3} + \frac{14.5}{2} - \frac{20.9999^{-2} - 7.2636^{-2}}{4}\right) \\ &= 4,607.5 \ \text{ lb}_f\text{-in} \end{split}$$

$$S_2 = \pm \frac{M_q \cdot K_1'}{\pi \cdot R^2 \cdot t} = \frac{4,607.5 \cdot 1}{\pi \cdot 20.9062^{-2} \cdot 0.1874} = 18$$
 psi

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{15 \cdot 20.8125}{2 \cdot 0.1874} = 833$$
 psi

Maximum tensile stress (shut down) S_{2t} = S₂ = $\underline{18}$ psi Maximum compressive stress S_{2c} = S₂ + S_p = $\underline{851}$ psi Tensile stress is acceptable ($\leq S = 18,900$ psi)

Compressive stress is acceptable ($\leq S_c = 7,619$ psi)

Tangential shear stress in the shell (right saddle, Weight, Vacuum)

$$S_3 = \frac{K_{2.3} \cdot Q}{R \cdot t} = \frac{0.8127 \cdot 4,272}{20.9062 \cdot 0.1874} = \underline{886} \text{ psi}$$

Tangential shear stress is acceptable ($\leq 0.8 \cdot S = 15,120$ psi)

The wear plate was not considered in the calculation of S_3 because the wear plate contact angle did not exceed the saddle contact angle by at least 11.46°.

Circumferential stress at the right saddle horns (Weight, Vacuum)

$$S_{4} = \frac{-Q}{4 \cdot t \cdot (b + 1.56 \cdot \sqrt{R_{o} \cdot t})} - \frac{3 \cdot K_{3} \cdot Q}{2 \cdot t^{2}}$$
$$= \frac{-4,272}{4 \cdot 0.1874 \cdot (8 + 1.56 \cdot \sqrt{20.9999 \cdot 0.1874})} - \frac{3 \cdot 0.0124 \cdot 4,272}{2 \cdot 0.1874^{-2}}$$
$$= -2.776 \text{ psi}$$

Circumferential stress at saddle horns is acceptable ($\leq 1.5 \cdot S_a = 28,350 \, \text{psi}$) The wear plate was not considered in the calculation of S₄ because the wear plate contact angle did not exceed the saddle contact angle by at least 11.46° and the wear plate width is not at least $\{b + 1.56 \cdot \sqrt{R_o \cdot t}\} = 11.0947$ in

Ring compression in shell over right saddle (Weight, Vacuum)

$$S_{5} = \frac{K_{5} \cdot Q}{(t+t_{p}) \cdot (t_{s} + 1.56 \cdot \sqrt{R_{o} \cdot t_{c}})}$$
$$= \frac{0.7457 \cdot 4.272}{(0.1874 + 0.25) \cdot (0.25 + 1.56 \cdot \sqrt{20.9999 \cdot 0.4374})}$$
$$= \underline{1.463} \text{ psi}$$

Ring compression in shell is acceptable ($\leq 0.5 \cdot S_y = 11,\!200~{
m psi})$

Saddle splitting load (right, Weight, Vacuum)

Area resisting splitting force = Web area + wear plate area

$$A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 7 \cdot 0.25 + 0.25 \cdot 11$$
 = 4.5 in²

$$S_6 = \frac{K_8 \cdot Q}{A_e} = \frac{0.2108 \cdot 4,272}{4.5} = 200$$
 psi

Stress in saddle is acceptable $\left(\ \leq rac{2}{3} \cdot S_s = 13{,}333 \ \mathrm{psi}
ight)$

Longitudinal stress at the left saddle (Weight, Vacuum)

$$L_e = \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 7.2636}{3} + 172.75 + \frac{2 \cdot 7.2636}{3} = 182.4348$$
 in

$$w = rac{W_t}{L_e} = rac{10,738}{182.4348} = 58.86 ~ \mathrm{lb}_f/\mathrm{in}$$

Bending moment at the left saddle:

$$M_q = w \cdot \left(rac{2 \cdot H_l \cdot A_l}{3} + rac{A_l^2}{2} - rac{R^2 - H_l^2}{4}
ight)$$

$$= 58.86 \cdot \left(\frac{2 \cdot 7.2636 \cdot 38.25}{3} + \frac{38.25^2}{2} - \frac{20.9999^2 - 7.2636^2}{4}\right)$$
$$= 48.246.7 \text{ lb}_{f} \text{-in}$$

$$S_2 = \pm rac{M_q \cdot K_1 \,'}{\pi \cdot R^2 \cdot t} = rac{48,\!246.7 \cdot 8.8457}{\pi \cdot 20.9062^{-2} \cdot 0.1874} = 1,\!659 \;\; \mathrm{psi}$$

$$S_p = rac{P \cdot R}{2 \cdot t} = rac{15 \cdot 20.8125}{2 \cdot 0.1874} = 833 \; \mathrm{psi}$$

Maximum tensile stress (shut down) S_{2t} = S₂ = $\frac{1.659}{1.400}$ psi Maximum compressive stress S_{2c} = S₂ + S_p = $\frac{2.492}{2.492}$ psi

Tensile stress is acceptable ($\leq S = 18,900$ psi)

Compressive stress is acceptable ($\leq S_c =$ 7,619 $\,\mathrm{psi})$

Tangential shear stress in the shell (left saddle, Weight, Vacuum)

$$Q_{shear} = Q - w \cdot \left(A_l + \frac{2 \cdot H_l}{3}\right) = 6,466 - 58.86 \cdot \left(38.25 + \frac{2 \cdot 7.2636}{3}\right) = 3,929.61 \text{ lb}_f$$

$$S_3 = \frac{K_{2.2} \cdot Q_{shear}}{R \cdot t} = \frac{1.1076 \cdot 3,929.61}{20.9062 \cdot 0.1874} = \underline{1,111} \text{ psi}$$

Tangential shear stress is acceptable ($\leq 0.8 \cdot S = 15{,}120~{
m psi}$)

Circumferential stress at the left saddle horns (Weight, Vacuum)

$$\begin{split} S_4 &= \frac{-Q}{4 \cdot t \cdot \left(b + 1.56 \cdot \sqrt{R_o \cdot t}\right)} - \frac{3 \cdot K_3 \cdot Q}{2 \cdot t^2} \\ &= \frac{-6,466}{4 \cdot 0.1874 \cdot \left(8 + 1.56 \cdot \sqrt{20.9999 \cdot 0.1874}\right)} - \frac{3 \cdot 0.0363 \cdot 6,466}{2 \cdot 0.1874^{-2}} \\ &= \underline{-10,803} \text{ psi} \end{split}$$

Circumferential stress at saddle horns is acceptable ($\leq 1.5 \cdot S_a = 28,350 \, \text{psi}$) The wear plate was not considered in the calculation of S₄ because the wear plate contact angle did not exceed the saddle contact angle by at least 11.46° and the wear plate width is not at least $\{b + 1.56 \cdot \sqrt{R_o \cdot t}\} = 11.0947$ in

Ring compression in shell over left saddle (Weight, Vacuum)

$$S_{5} = \frac{K_{5} \cdot Q}{(t + t_{p}) \cdot (t_{s} + 1.56 \cdot \sqrt{R_{o} \cdot t_{c}})}$$
$$= \frac{0.7457 \cdot 6,466}{(0.1874 + 0.25) \cdot (0.25 + 1.56 \cdot \sqrt{20.9999 \cdot 0.4374})}$$
$$= 2,214 \text{ psi}$$

Ring compression in shell is acceptable ($\leq 0.5 \cdot S_y = 11{,}200~{
m psi})$

Saddle splitting load (left, Weight, Vacuum)

Area resisting splitting force = Web area + wear plate area

$$A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 7 \cdot 0.25 + 0.25 \cdot 11$$
 = 4.5 in²

$$S_6 = \frac{K_8 \cdot Q}{A_e} = \frac{0.2108 \cdot 6{,}466}{4.5} = \underline{303} \text{ psi}$$

Stress in saddle is acceptable $\left(\leq rac{2}{3} \cdot S_s = 13{,}333 \; \mathrm{psi}
ight)$

Shear stress in anchor bolting, one end slotted

Maximum seismic or wind base shear = 0 lb_f

Thermal expansion base shear = $W \cdot \mu$ = 4,419*0.45 = 1,988.55 lb_f

Corroded root area for a 1" series 8 threaded bolt $\,=0.551\,$ in 2 (2 per saddle)

Bolt shear stress = $\frac{1,988.55}{0.551 \cdot 1 \cdot 2} = 1,804$ psi

Anchor bolt stress is acceptable (≤ 15,000 psi)

Shear stress in anchor bolting, transverse

Maximum seismic or wind base shear = 0 lb $_f$

Corroded root area for a 1" series 8 threaded bolt $\,=0.551\,$ ${
m in}^2$ (2 per saddle)

Bolt shear stress = $\frac{0}{0.551 \cdot 2 \cdot 2} = 0$ psi

Anchor bolt stress is acceptable (≤ 15,000 psi)

Web plate buckling check (Escoe pg 251)

Allowable compressive stress $S_c = min(20,000, 20,270) = 20,000 psi$

$$S_c = \frac{K_i \cdot \pi^2 \cdot E}{12 \cdot (1 - 0.3^2) \cdot \left(\frac{d_i}{t_s}\right)^2} = \frac{1.28 \cdot \pi^2 \cdot 29E + 06}{12 \cdot (1 - 0.3^2) \cdot \left(\frac{10.1708}{0.25}\right)^2} = 20,270 \text{ psi}$$

Allowable compressive load on the saddle

$$b_e = \frac{d_i \cdot t_s}{(d_i \cdot t_s) + 2 \cdot t_w \cdot (b-1)} = \frac{10.1708 \cdot 0.25}{(10.1708 \cdot 0.25) + 2 \cdot 0.25 \cdot (8-1)} = 0.4208$$

$$F_b = n \cdot (A_s + 2 \cdot b_e \cdot t_s) \cdot S_c = 5 \cdot (1.9375 + 2 \cdot 0.4208 \cdot 0.25) \cdot 20,000 = 214,789.48$$
 lb $_f$

Saddle loading of 8,611 lb_f is \leq F_b; satisfactory.

Primary bending + axial stress in the saddle due to end loads (assumes one saddle slotted)

$$\sigma_b = \frac{V \cdot (H_s - x_o) \cdot y}{I} + \frac{Q}{A} = \frac{0 \cdot (30.25 - 17.135) \cdot 4.9226}{89.1} + \frac{6,466}{18.9584} = 341 \text{ psi}$$

The primary bending + axial stress in the saddle \leq S_S = 20,000 psi; satisfactory.

Secondary bending + axial stress in the saddle due to end loads (includes thermal expansion, assumes one saddle slotted)

$$\sigma_b = \frac{V \cdot (H_s - x_o) \cdot y}{I} + \frac{Q}{A} = \frac{1,988.55 \cdot (30.25 - 17.135) \cdot 4.9226}{89.1} + \frac{4,272}{18.9584} = 1,666 \text{ psi}$$

The secondary bending + axial stress in the saddle $\leq 2^*S_v = 76,000$ psi; satisfactory.

Saddle base plate thickness check (Roark sixth edition, Table 26, case 7a)

where a = 10.1708, b = 8.75 in

$$t_b = \sqrt{\frac{\beta_1 \cdot q \cdot b^2}{1.5 \cdot S_a}} = \sqrt{\frac{0.8654 \cdot 23 \cdot 8.75^{-2}}{1.5 \cdot 20,000}} = 0.2245 \quad \text{in}$$

The base plate thickness of 0.375 in is adequate.